Skip to main content
Log in

Defect formation, ordering, and transport in SrFe1–x Si x O3–δ (x = 0.05–0.20)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen nonstoichiometry of perovskite-like SrFe1–x Si x O3–δ (x = 0.05–0.20), studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 10−20–0.5 atm at 700–950 °C, decreases with Si4+ additions. The equilibrium \( {p}_{{\mathrm{O}}_2} \)Tδ diagrams can be adequately described by a model accounting for anion site-exclusion effects near highly stable SiO4 tetrahedra and energetic favorability of the defect clusters formed by two tetrahedra sharing one oxygen vacancy. This model was validated by atomistic computer simulations. The standard thermodynamic functions for oxygen incorporation and iron disproportionation reactions are essentially independent of silicon concentration, as for the migration activation energies of the p- and n-type electronic charge carriers. On the contrary, at low temperatures, Si-doping leads to a higher oxygen deficiency, simultaneously suppressing long-range vacancy ordering and increasing oxygen coordination of iron cations as estimated from the Mössbauer spectra. These phenomena are associated, again, with vacancy trapping near randomly distributed Si4+. The Mössbauer spectroscopy, transmission electron microscopy, and electron diffraction studies showed that Si4+ substitution progressively reduces the content of brownmillerite-like nanodomains typical for SrFeO3-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee JH, Mori T, Li JG, Ikegami T, Komatsu M, Haneda H (2000) J Electrochem Soc 147:2822–2829

    Article  CAS  Google Scholar 

  2. Kharton VV, Marques FMB, Tsipis EV, Viskup AP, Patrakeev MV, Harkavy AV, Samigullina R, Frade JR (2003) Ionics 9:122–126

    Article  CAS  Google Scholar 

  3. Viitanen MM (2002) Welzenis RGv, Brongersma HH, Van Berkel FPF. Solid State Ionics 150:223–228

    Article  CAS  Google Scholar 

  4. Liu Y, Zhu X, Li M, Li W, Yang W (2015) J Membrane Sci 492:173–180

    Article  CAS  Google Scholar 

  5. Perz M, Bucher E, Gspan C, Waldhausl J, Hofer F, Sitte W (2016) Solid State Ionics 288:22–27

    Article  CAS  Google Scholar 

  6. Tsipis EV, Kharton VV, Frade JR (2007) Electrochim Acta 52:4428–4435

    Article  CAS  Google Scholar 

  7. Schuler JA, Wuillemin Z, Hessler-Wyser A (2011) Van herle J. Electrochem Solid-State Lett 14:B20–B22

    Article  CAS  Google Scholar 

  8. Porras-Vazquez JM, Smith RI, Slater PR (2014) J Solid State Chem 213:132–137

  9. Hancock CA, Slater PR (2011) Dalton Trans 40:5599–5603

    Article  CAS  Google Scholar 

  10. Porras-Vazquez JM, Pike T, Hancock CA, Marco JF, Berrya FJ, Slater PR (2013) J Mater Chem A1:11834–11841

  11. Porras-Vazquez JM, Losilla ER, Keenan PJ, Hancock CA, Kemp TF, Hanna JV, Slater PR (2013) Dalton Trans 42:5421–5429

  12. Merkulov OV, Markov AA, Patrakeev MV, Chukin AV, Leonidov IA, Kozhevnikov VL (2016) Solid State Ionics 292:83–87

    Article  CAS  Google Scholar 

  13. Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1983) J Am Ceram Soc 66:247–252

    Article  CAS  Google Scholar 

  14. Kobayashi K, Yamaguchi S, Mukaida M, Tsunoda T (2001) Solid State Ionics 144:315–320

    Article  CAS  Google Scholar 

  15. Samsonov G (ed) (1982) The oxide handbook. Springer, NY

    Google Scholar 

  16. Draper NR, Smith H (1981) Applied regression analysis. John Wiley & Sons, New York

    Google Scholar 

  17. CaRIne Crystallography 4.0, Cyrille Boudias & Daniel Monceau. http://carine.crystallography.pagespro-orange.fr/. Accessed 22 June 2017

  18. Waerenborgh JC, Rojas DP, Shaula AL, Mather GC, Patrakeev MV, Kharton VV, Frade JR (2005) Mater Lett 59:1644–1648

    Article  CAS  Google Scholar 

  19. Waerenborgh JC, Tsipis EV, Yaremchenko AA, Kharton VV (2011) J Solid State Chem 184:2610–2614

    Article  CAS  Google Scholar 

  20. Patrakeev MV, Leonidov IA, Kozhevnikov VL (2011) J Solid State Electrochem 15:931–954

    Article  CAS  Google Scholar 

  21. Merkulov OV, Naumovich EN, Patrakeev MV, Markov AA, Bouwmeester HJM, Leonidov IA, Kozhevnikov VL (2016) Solid State Ionics 292:116–121

    Article  CAS  Google Scholar 

  22. Markov AA, Chesnokov KY, Patrakeev MV, Leonidov IA, Chukin AV, Leonidova ON, Kozhevnikov VL (2016) J Solid State Electrochem 20:225–234

    Article  CAS  Google Scholar 

  23. Gale JD (1997) J Chem Soc Faraday Trans 93:629–637

    Article  CAS  Google Scholar 

  24. Gale JD, Rohl AL (2003) Mol Simul 29:291–234

    Article  CAS  Google Scholar 

  25. Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Solid State Sci 8:476–487

    Article  CAS  Google Scholar 

  26. Nakayama N, Takano M, Inamura S, Nakanishi N, Kosuge K (1987) J Solid State Chem 71:403–417

    Article  CAS  Google Scholar 

  27. Alario-Franco MA, Gonzalez-Calbet JM, Vallet-Regi M (1983) J Solid State Chem 49:219–231

    Article  CAS  Google Scholar 

  28. Gallagher PK, McChesney JB, Buchanan DNE (1964) J Chem Phys 41:2429–2433

    Article  CAS  Google Scholar 

  29. Waerenborgh JC, Tsipis EV, Auckett JE, Ling CD, Kharton VV (2013) J Solid State Chem 205:5–9

    Article  CAS  Google Scholar 

  30. Yaremchenko AA, Tsipis EV, Kovalevsky AV, Waerenborgh JC, Kharton VV (2011) Solid State Ionics 192:259–268

    Article  CAS  Google Scholar 

  31. Patrakeev MV, Markov AA, Shalaeva EV, Tsipis EV, Waerenborgh JC, Kharton VV, Leonidov IA, Kozhevnikov VL (2013) Solid State Ionics 244:17–22

    Article  CAS  Google Scholar 

  32. Binomial Distribution (2003) e–Handbook of Statistical Methods, NIST/SEMATECH. http://www.itl.nist.gov/div898/handbook/. Accessed 8 Feb 2017

  33. Markov AA, Shalaeva EV, Tyutyunnik AP, Kuchin VV, Patrakeev MV, Leonidov IA, Kozhevnikov VL (2013) J Solid State Chem 197:191–197

    Article  CAS  Google Scholar 

  34. Patrakeev MV, Leonidov IA, Kozhevnikov VL, Kharton VV (2004) Solid State Sci 6:907–913

    Article  CAS  Google Scholar 

  35. Markov AA, Savinskaya OA, Patrakeev MV, Nemudry AP, Leonidov IA, Pavlyukhin YT, Ishchenko AV, Kozhevnikov VL (2009) J Solid State Chem 182:799–806

    Article  CAS  Google Scholar 

  36. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  37. Lewis V, Catlow CRA (1985) J Phys C Solid State Phys 18:1149–1161

    Article  CAS  Google Scholar 

  38. Cherry M, Islam MS, Catlow CRA (1995) J Solid State Chem 118:125–132

    Article  CAS  Google Scholar 

  39. Woodley SM, Battle PD, Gale JD, Richard C, Catlow A (1999) Phys Chem Chem Phys 1:2535–2542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Russian Foundation for Basic Research (grant 17-08-01029), Ministry of Education and Science of the Russian Federation (project 14.B25.31.0018), Russian Science Foundation (project 17-79-30071), FCT, Portugal (projects UID/EMS/00481/2013 and UID/Multi/04349/2013), and FEDER, Portugal (project CENTRO-01-0145-FEDER-022083) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Merkulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulov, O.V., Naumovich, E.N., Patrakeev, M.V. et al. Defect formation, ordering, and transport in SrFe1–x Si x O3–δ (x = 0.05–0.20). J Solid State Electrochem 22, 727–737 (2018). https://doi.org/10.1007/s10008-017-3797-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3797-7

Keywords

Navigation