Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biol 10:106. https://doi.org/10.1186/1471-2229-10-106
CAS
Article
PubMed
PubMed Central
Google Scholar
Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2009) Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9:127. https://doi.org/10.1186/1471-2229-9-127
CAS
Article
PubMed
PubMed Central
Google Scholar
Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062. https://doi.org/10.1094/MPMI-20-9-1055
CAS
Article
PubMed
Google Scholar
Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Plant Signal Behav 9:e977707. https://doi.org/10.4161/15592324.2014.977707
CAS
Article
PubMed
PubMed Central
Google Scholar
Becker MG, Zhang X, Walker PL, Wan JC, Millar JL, Khan D, Granger MJ, Cavers JD, Chan AC, Fernando DWG, Belmonte MF (2017) Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J 90:573–586. https://doi.org/10.1111/tpj.13514
CAS
Article
PubMed
Google Scholar
Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5:436. https://doi.org/10.3389/fpls.2014.00436
Article
PubMed
PubMed Central
Google Scholar
Berruti A, Borriello R, Lumini E, Scariot V, Bianciotto V, Balestrini R (2013) Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Front Plant Sci 4:135. https://doi.org/10.3389/fpls.2013.00135
Article
PubMed
PubMed Central
Google Scholar
Bir N, Paliwal A, Muralidhar K, Reddy P, Sarma PU (1995) A rapid method for the isolation of genomic DNA from Aspergillus fumigatus. Prep Biochem 25:171–181. https://doi.org/10.1080/10826069508010119
CAS
Article
PubMed
Google Scholar
Bölling A (2012) Kurzzeiteffekte einer intrauterinen Seminalplasmaapplikation auf die Genexpression immun- und follikelreifungsassoziierter Transkripte im weiblichen Genitaltrakt des Schweins. Dissertation, Tierärztliche Hochschule Hannover, pp 33–34
Braun PG (1991) The combination of Cylindrocarpon lucidum and Pythium irregulare as a possible cause of apple replant disease in Nova Scotia. Can J Plant Pathol 13:291–297. https://doi.org/10.1080/07060669109500914
Article
Google Scholar
Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW (2012a) Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Progress 11:655–688. https://doi.org/10.1007/s11557-011-0777-7
Article
Google Scholar
Cabral A, Rego C, Crous PW, Oliveira H (2012b) Virulence and cross-infection potential of Ilyonectria spp. to grapevine. Phytopathol Mediterr 51:340–354
Google Scholar
Campos-Soriano L, Gómez-Ariza J, Bonfante P, San Segundo B (2011) A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biol 11:90. https://doi.org/10.1186/1471-2229-11-90
CAS
Article
PubMed
PubMed Central
Google Scholar
Carlucci A, Lops F, Mostert L, Halleen F, Raimondo ML (2017) Occurrence of fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathol Mediterr 56:10–39. https://doi.org/10.14601/Phytopathol_Mediterr-18769
Caruso FL, Neubauer BF, Begin MD (1989) A histological study of apple roots affected by replant disease. Can J Bot 67:742–749. https://doi.org/10.1139/b89-100
Article
Google Scholar
Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465. https://doi.org/10.1073/pnas.0912492107
Article
PubMed
Google Scholar
Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600. https://doi.org/10.1371/journal.ppat.1002600
CAS
Article
PubMed
PubMed Central
Google Scholar
Crous PW, Groenewald JZ, Risède J-M, Simoneau P, Hywel-Jones NL (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol:415–430
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001. https://doi.org/10.1126/science.274.5289.998
CAS
Article
PubMed
Google Scholar
Fang J, Schneider B (2014) Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Anal 25:307–313. https://doi.org/10.1002/pca.2477
CAS
Article
PubMed
Google Scholar
Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L (2016) RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Mycorrhiza 26:609–621. https://doi.org/10.1007/s00572-016-0697-0
CAS
Article
PubMed
Google Scholar
Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, Walker MA, McElrone AJ (2013) Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol 163:1254–1265. https://doi.org/10.1104/pp.113.221283
CAS
Article
PubMed
PubMed Central
Google Scholar
Geldart GH (1994) The impact of replant problem on the economics of high density apple plantings. Acta Hortic.:11–18. https://doi.org/10.17660/ActaHortic.1994.363.2
Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619. https://doi.org/10.1111/nph.12949
CAS
Article
PubMed
Google Scholar
Gomez SK, Harrison MJ (2009) Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Manag Sci 65:504–511. https://doi.org/10.1002/ps.1715
CAS
Article
PubMed
Google Scholar
Gotté M, Bénard M, Kiefer-Meyer M-C, Jaber R, Moore JP, Vicré-Gibouin M, Driouich A (2016) endoplasmic reticulum body-related gene expression in different root zones of Arabidopsis isolated by laser-assisted microdissection. Plant Genome. https://doi.org/10.3835/plantgenome2015.08.0076
Article
PubMed
Google Scholar
Green MJ, Thompson DA, MacKenzie DJ (1999) Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Dis 83:482–485. https://doi.org/10.1094/PDIS.1999.83.5.482
CAS
Article
PubMed
Google Scholar
Grunewaldt-Stöcker G, Mahnkopp F, Popp C, Maiss E, Winkelmann T (2019) Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Sci Hort 243:583–594. https://doi.org/10.1016/j.scienta.2018.09.014
Article
Google Scholar
Harrop TW, Ud Din I, Gregis V, Osnato M, Jouannic S, Adam H, Kater MM (2016) Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. Plant J 86:75–88. https://doi.org/10.1111/tpj.13147
CAS
Article
PubMed
Google Scholar
Hoestra H (1968) Replant diseases of apple in the Netherlands: Ph.D. thesis. Meded. Landbouwhogesch., Wageningen, the Netherlands, pp 20–24
Hölscher D, Schneider B (2008) Application of laser-assisted microdissection for tissue and cell-specific analysis of RNA, proteins, and metabolites. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer, Berlin, pp 141–167
Chapter
Google Scholar
Huisman R, Hontelez J, Mysore KS, Wen J, Bisseling T, Limpens E (2016) A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. New Phytol 211:1338–1351. https://doi.org/10.1111/nph.13973
CAS
Article
PubMed
Google Scholar
Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, Nishizawa NK, Nakazono M, Kondo M (2015) Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase. Rice (N Y) 8:57. https://doi.org/10.1186/s12284-015-0057-2
Article
Google Scholar
Jaffee BA, Abawi GS, Mai WF (1982) Role of soil microflora and Pratylenchus penetrans in apple replant disease. Phytopathology 72:247. https://doi.org/10.1094/Phyto-72-247
Article
Google Scholar
Kelderer M, Manici LM, Caputo F, Thalheimer M (2012) Planting in the ‘inter-row’ to overcome replant disease in apple orchards: a study on the effectiveness of the practice based on microbial indicators. Plant Soil 357:381–393. https://doi.org/10.1007/s11104-012-1172-0
CAS
Article
Google Scholar
Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35. https://doi.org/10.1104/pp.102.018127
CAS
Article
PubMed
PubMed Central
Google Scholar
Lawrence DP, Nouri MT, Trouillas FP (2019) Taxonomy and multi-locus phylogeny of cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California. FUSE 4:59–75. https://doi.org/10.3114/fuse.2019.04.06
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu L, Wang CL, Peng WY, Yang J, Lan MQ, Zhang B, Li JB, Zhu YY, Li CY (2015) Direct DNA extraction method of an obligate parasitic fungus from infected plant tissue. Genet Mol Res 14:18546–18551. https://doi.org/10.4238/2015.December.28.1
CAS
Article
PubMed
Google Scholar
Mahnkopp F, Simon M, Lehndorff E, Pätzold S, Wrede A, Winkelmann T (2018) Induction and diagnosis of apple replant disease (ARD): a matter of heterogeneous soil properties? Sci Hort 241:167–177. https://doi.org/10.1016/j.scienta.2018.06.076
Article
Google Scholar
Mai WF, Abawi GS (1981) Controlling replant disease of pome and stone fruit in northeastern United States by preplant fumigation. Plant Dis 65:859–864
Article
Google Scholar
Manici LM, Ciavatta C, Kelderer M, Erschbaumer G (2003) Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant Soil 256:315–324
CAS
Article
Google Scholar
Manici LM, Kelderer M, Caputo F, Saccà ML, Nicoletti F, Topp AR, Mazzola M (2018) Involvement of Dactylonectria and Ilyonectria spp. in tree decline affecting multi-generation apple orchards. Plant Soil 425:217–230. https://doi.org/10.1007/s11104-018-3571-3
CAS
Article
Google Scholar
Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–938. https://doi.org/10.1094/PHYTO.1998.88.9.930
CAS
Article
PubMed
Google Scholar
Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65. https://doi.org/10.1146/annurev-phyto-081211-173005
CAS
Article
PubMed
Google Scholar
McNamara NP, Griffiths RI, Tabouret A, Beresford NA, Bailey MJ, Whiteley AS (2007) The sensitivity of a forest soil microbial community to acute gamma-irradiation. Appl Soil Ecol 37:1–9. https://doi.org/10.1016/j.apsoil.2007.03.011
Article
Google Scholar
Moťková P, Vytřasová J (2012) Comparison of methods for isolating fungal DNA. Czech J. Food Sci. 29:S76-S85. https://doi.org/10.17221/266/2011-CJFS
Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57:181–201. https://doi.org/10.1146/annurev.arplant.56.032604.144138
CAS
Article
PubMed
Google Scholar
Peist R, Honsel D, Twieling G, Löffert D (2001) PCR inhibitors in plant DNA preparations. QIAGEN News 3:7–9
Google Scholar
Popp C, Grunewaldt-Stöcker G, Maiss E (2019) A soil-free method for assessing pathogenicity of fungal isolates from apple roots. J Plant Dis Prot 126:329–341. https://doi.org/10.1007/s41348-019-00236-6
Article
Google Scholar
Reim S, Siewert C, Winkelmann T, Wöhner T, Hanke M-V, Flachowsky H (2019) Evaluation of Malus genetic resources for tolerance to apple replant disease (ARD). Sci Hort 256:108517. https://doi.org/10.1016/j.scienta.2019.05.044
Article
Google Scholar
Reis P, Cabral A, Nascimento T, Oliveira H, Rego C (2013) Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathol Mediterr 52:335–346
Google Scholar
Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 113:1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
CAS
Article
PubMed
Google Scholar
Singh UA, Kumari M, Iyengar S (2018) Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resin. Biol Proced Online 20:12. https://doi.org/10.1186/s12575-018-0077-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Tewoldemedhin YT, Mazzola M, Labuschagne I, McLeod A (2011) A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biol and Biochem 43:1917–1927. https://doi.org/10.1016/j.soilbio.2011.05.014
CAS
Article
Google Scholar
Utkhede RS, Vrain TC, Yorston JM (1992) Effects of nematodes, fungi and bacteria on the growth of young apple trees grown in apple replant disease soil. Plant Soil 139:1–6. https://doi.org/10.1007/BF00012835
Article
Google Scholar
Weber RWS, Entrop A-P (2017) Dactylonectria torresensis as the main component of the black root rot complex of strawberries and raspberries in northern Germany. Erwerbs-Obstbau 59:157–169. https://doi.org/10.1007/s10341-017-0343-9
Article
Google Scholar
Wei T, Lu G, Clover G (2008) Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J Virol Methods 151:132–139. https://doi.org/10.1016/j.jviromet.2008.03.003
CAS
Article
PubMed
Google Scholar
Weiß S, Liu B, Reckwell D, Beerhues L, Winkelmann T (2017a) Impaired defense reactions in apple replant disease-affected roots of Malus domestica 'M26'. Tree Physiol 37:1672–1685. https://doi.org/10.1093/treephys/tpx108
CAS
Article
PubMed
Google Scholar
Weiß S, Bartsch M, Winkelmann T (2017b) Transcriptomic analysis of molecular responses in Malus domestica 'M26' roots affected by apple replant disease. Plant Mol Biol 94:303–318. https://doi.org/10.1007/s11103-017-0608-6
CAS
Article
PubMed
Google Scholar
Winkelmann T, Smalla K, Amelung W, Baab G, Grunewaldt-Stöcker G, Kanfra X, Meyhöfer R, Reim S, Schmitz M, Vetterlein D, Wrede A, Zühlke S, Grunewaldt J, Weiß S, Schloter M (2019) Apple replant disease: Causes and mitigation strategies. Curr Issues Mol Biol 30:89–106. https://doi.org/10.21775/cimb.030.089
Yamamoto N, Kimura M, Matsuki H, Yanagisawa Y (2010) Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. J Biosci Bioeng 109:83–88. https://doi.org/10.1016/j.jbiosc.2009.06.015
CAS
Article
PubMed
Google Scholar
Yim B, Smalla K, Winkelmann T (2013) Evaluation of apple replant problems based on different soil disinfection treatments—links to soil microbial community structure? Plant Soil 366:617–631. https://doi.org/10.1007/s11104-012-1454-6
CAS
Article
Google Scholar
Yim B, Winkelmann T, Ding G-C, Smalla K (2015) Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis: contribution to improved aboveground apple plant growth? Front Microbiol 6:1224. https://doi.org/10.3389/fmicb.2015.01224
Article
PubMed
PubMed Central
Google Scholar