Skip to main content

Advertisement

Log in

Morphological and molecular identification of fungi associated with South African apple core rot

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Core rot is a major contributor to postharvest losses in apples worldwide. Pathogens most commonly associated with the disease are Alternaria spp. and Penicillium spp. Although both genera show specific morphological characteristics, they can be difficult to identify to species level. In this study, Alternaria spp. (49) and Penicillium spp. isolates (97), associated with pre- and post-harvest apple core rot-symptoms and isolates from potential inoculum sources were identified using molecular methods. Initially, dry core rot causing Alternaria spp. were identified morphologically in an average of 70% of infected fruit pre-harvest and 32% postharvest. Furthermore, 78% of mouldy core rot causing pathogens were identified as Alternaria spp. preharvest and 40% postharvest. Wet core rot was associated with Penicillium spp. in 64% of cases preharvest and 36% postharvest. Species identity of a selection of samples was confirmed using the endopolygalacturonase (endo-PG) gene, the ITS region, and the anonymous genomic regions (OPA1–3, 2–1), which resulted in the identification of A. alternata, A. arborescens, A. dumosa, A. eureka and A. tenuissima. Penicillium species were identified through ITS sequencing and partial beta-tubulin polymerase chain reaction – random fragment length polymorphisms (PCR-RFLP) for the samples collected from wet core rot symptoms. Phylogenetic analyses separated the Alternaria spp. into five clades, including three separate clades for A. alternata, A. tenuissima and A. arborescens, respectively. This is the first report of A. eureka and P. polonicum as potential core rot pathogens. Phylogenetic analysis identified Penicillium ramulosum and P. expansum as the most commonly occurring species associated with WCR symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfaro, C., Urios, A., González, M. C., Moya, P., & Blanco, M. (2003). Screening for metabolites from Penicillium novae-zeelandiae displaying radical-scavenging activity and oxidative mutagenicity: Isolation of gentisyl alcohol. Mutation Research, 539, 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Amiri, A., & Bompeix, G. (2005). Diversity and population dynamics of Penicillium spp. in apples in pre- and postharvest environments: consequences for decay development. Plant Pathology, 54, 74–81.

    Article  Google Scholar 

  • Andersen, B., Sørensen, J. L., Nielsen, K. F., Gerrits-van den Ende, B., & de Hoog, S. (2009). A polyphasic approach to the taxonomy of the Alternaria infectoria specie-group. Fungal Genetics and Biology, 46, 642–656.

    Article  CAS  PubMed  Google Scholar 

  • Andrew, M., Peever, T. L., & Pryor, B. M. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101, 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.). St. Paul: APS Press, The American Phytopathological Society.

    Google Scholar 

  • Berbee, M. L., Payne, B. P., Zhang, G., Roberts, R. G., & Turgeon, B. G. (2003). Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycological Research, 107, 169–182.

    Article  CAS  PubMed  Google Scholar 

  • Çakir, E., & Maden, S. (2015). First report of Penicillium polonicum causing storage rots of onion bulbs in Ankara province, Turkey. New Disease Reports, 32, 24. https://doi.org/10.5197/j.2044-0588.2015.032.024.

    Article  Google Scholar 

  • Carpenter, J. B. (1942). Moldy core of apples in Wisconsin. Phytopathology, 32, 896–900.

    Google Scholar 

  • Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GENBANK. Nucleic Acids Research, 44(Database issue), D67–D72. Published online 2015 Nov 20.. https://doi.org/10.1093/nar/gkv1276.

    Article  CAS  PubMed  Google Scholar 

  • Combrink, J. C., & Ginsburg, L. (1973). Core rot in Starking apples – A preliminary investigation into the origin and control. Deciduous Fruit Grower, 23, 16–19.

    Google Scholar 

  • Combrink, J. C., Kotzé, J. M., Wehner, F. C., & Grobbelaar, C. J. (1985). Fungi associated with core rot of Starking apples in South Africa. Phytophylactica, 17, 81–83.

    Google Scholar 

  • Combrink, J. C., Grobbelaar, C. J., & Visagie, T. R. (1987). Effect of diphenylamine emulsifiable concentrations on the development of wet core rot in Starking apples. Deciduous Fruit Grower, 37, 97–99.

    Google Scholar 

  • Conway, W. A. (1983). Trichoderma harzianum. A possible cause of apple decay in storage. Plant Disease Report, 67, 316–317.

    Google Scholar 

  • Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution, 14, 733–740.

    Article  CAS  PubMed  Google Scholar 

  • de Hoog, G. S., & Horré, R. (2002). Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45, 259–276.

    Article  PubMed  Google Scholar 

  • de Hoog, G. S., & van den Ende, A. H. G. (1998). Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses, 41, 183–189.

    Article  PubMed  Google Scholar 

  • de Kock, S. L., Visagie, T. R., & Combrink, J. C. (1991). Control of core rot in Starking apples. Deciduous Fruit Grower, 41, 20–22.

    Google Scholar 

  • Ellis, M. A., & Barrat, J. G. (1983). Colonization of delicious apple fruits by Alternaria spp. and effect of fungicide sprays on moldy-core. Plant Disease, 67, 150–152.

    Article  Google Scholar 

  • Farris, J. S., Källersjö, M., Kluge, A. G., & Bult, C. (1994). Testing significance of incongruence. Cladistics, 10, 315–319.

    Article  Google Scholar 

  • Fazlikhani, L., & Soleimani, M. J. (2013). First report of Alternaria dumosa causing orange leaf spot disease in Iran. New Disease Reports, 27, 24. https://doi.org/10.5197/j.2044-0588.2013.027.024 Accessed 3 March 2017.

    Article  Google Scholar 

  • Frisvad, J. C., & Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 49, 1–174.

    Google Scholar 

  • Gao, L. L., Zhang, Q., Sun, X. Y., Jiang, L., Zhang, R., Sun, G. Y., Zha, Y. L., & Biggs, A. R. (2013). Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Disease, 97, 510–516.

    Article  CAS  PubMed  Google Scholar 

  • Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, C. J., & Langdale, J. A. (2006). A step by step guide to phylogeny reconstruction. The Plant Journal, 45, 561–572.

    Article  CAS  PubMed  Google Scholar 

  • Hong, C. X., Michailides, T. J., & Holtz, B. A. (2000). Mycoflora of stone fruit mummies in California orchards. Plant Disease, 84, 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. G., Liu, D., & Pryor, B. M. (2005). Restriction mapping of the IGS region in Alternaria spp. reveals variable and conserved domains. Mycological Research, 109, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. G., Maccaroni, M., Figuli, P. J., Pryor, B. M., & Belisario, A. (2006). Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. Mycological Research, 110, 1290–1300.

    Article  CAS  PubMed  Google Scholar 

  • Hortgro Statistics (2016). URL: http://www.hortgro.co.za/wp-content/uploads/2017/06/HORTGRO-Key-Deciduous-Fruit-Statistics-2016.pdf

  • Houbraken, J., Frisvad, J. C., & Samson, R. A. (2011). Taxonomy of Penicillium section Citrina. Studies in Mycology, 70, 53–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isshiki, A., Akimitsu, K., Yamamoto, M., & Yamamoto, H. (2001). Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Molecular Plant-Microbe Interactions, 14, 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz, W. J., Leverentz, B., Conway, W. S., Saftner, R. A., Reed, A. N., & Camp, M. J. (2003). Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions. Postharvest Biology and Technology, 29, 129–143.

    Article  CAS  Google Scholar 

  • Kang, J. C., Crous, P. W., Mchau, G. R. A., Serdani, S., & Song, S. M. (2002). Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycological Research, 106, 1151–1162.

    Article  CAS  Google Scholar 

  • Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT sequence alignment programme. Bioinformatics, 9, 286–298.

    CAS  PubMed  Google Scholar 

  • Kim, Y. K., & Xiao, C. L. (2008). Distribution and incidence of Sphaeropsis rot in apple in Washington State. Plant Disease, 92, 940–946.

    Article  CAS  PubMed  Google Scholar 

  • Kou, L. P., Gaskins, V. L., Luo, Y. G., & Jurick II, W. M. (2014). First report of Alternaria tenuissima causing postharvest decay on apple fruit from cold storage in the United States. Plant Disease, 98(5), 690.

    PubMed  Google Scholar 

  • Kusaba, M., & Tsuge, T. (1995). Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Current Genetics, 28, 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, D. P., Park, M. S., & Pryor, B. M. (2012). Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycological Progress, 11, 799–815.

    Article  Google Scholar 

  • Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 282–287). San Diego: Academic Press.

    Google Scholar 

  • Leverentz, B., Conway, W. S., Janisiewicz, W. J., Saftner, R. A., & Camp, M. J. (2003). Effect of combining MCP treatment, heat treatment, and biocontrol on the reduction of postharvest decay of ‘golden delicious’ apples. Postharvest Biology and Technology, 27, 221–223.

    Article  CAS  Google Scholar 

  • Lobuglio, K. F., Pitt, J. I., & Taylor, J. W. (1993). Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in the subgenus Biverticillium. Mycologia, 85, 592–604.

    Article  CAS  Google Scholar 

  • Lobuglio, K. F., Pitt, J. I., & Taylor, J. W. (1994). Independent origins of the synnematous Penicillium species, P. duclauxii, P. clavigerum and P. vulpinum, as assessed by two ribosomal DNA regions. Mycological Research, 98, 250–256.

    Article  Google Scholar 

  • Louw, J. P., & Korsten, L. (2014). Pathogenic Penicillium spp. on apple and pear. Plant Disease, 98(5), 590–598.

    Article  PubMed  Google Scholar 

  • Miller, P. M. (1959). Open calyx tubes as a factor contributing to carpel discoloration and decay of apples. Phytopathology, 49, 520–522.

    Google Scholar 

  • Morales, H., Marín, S., Rovira, A., Ramos, A. J., & Sanchis, V. (2007). Patulin accumulation in apples by Penicillium expansum during postharvest stages. Letters of Applied Microbiology, 44(1), 30–35.

    Article  CAS  Google Scholar 

  • Niem, J., Miyara, I., Ettedgui, Y., Reuveni, M., Flaishman, M., & Pruisky, D. (2007). Core rot development in susceptibility of the seed locule to Alternaria alternata colonization. Phytopathology, 97, 1414–1421.

    Article  CAS  Google Scholar 

  • Pavón, M. A., González, I., Pegels, N., Martín, R., & García, T. (2010). PCR detection and identification of Alternaria species-groups in processed foods based on the genetic marker Alt a 1. Food Control, 21, 1745–1756.

    Article  CAS  Google Scholar 

  • Peever, T. L., Ibañez, A., Akimitsu, K., & Timmer, L. W. (2002). Worldwide phylogeography of the citrus brown spot pathogen, Alternaria alternata. Phytopathology, 92, 794–802.

    Article  CAS  PubMed  Google Scholar 

  • Peever, T. L., Su, G., Carpenter-Boggs, L., & Timmer, L. W. (2004). Molecular systematics of citrus-associated Alternaria species. Mycologia, 96, 119–134.

    Article  CAS  PubMed  Google Scholar 

  • Peever, T. L., Carpenter-Boggs, L., Timmer, L. W., Carris, L. M., & Bhatia, A. (2005). Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata. Phytopathology, 95, 512–518.

    Article  CAS  PubMed  Google Scholar 

  • Pianzzola, M. J., Moscatelli, M., & Vero, S. (2004). Characterization of Penicillium isolates associated with blue mold on apple in Uruguay. Plant Disease, 88, 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). Cambridge: Blackie Academic and Professional, University Press.

    Book  Google Scholar 

  • Pratella, G. C., & Mari, M. (1993). Effectiveness of Trichoderma, Gliocladium and Paecilomyces in postharvest fruit protection. Postharvest Biology and Technology, 3, 49–56.

    Article  Google Scholar 

  • Pryor, B. M., & Bigelow, D. M. (2003). Molecular characterization of Embellisia and Nimbya and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia, 95, 1141–1154.

    Article  CAS  Google Scholar 

  • Pryor, B. M., & Gilbertson, R. L. (2000). Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycological Research, 104, 1312–1321.

    Article  CAS  Google Scholar 

  • Pryor, B. M., & Michailides, T. J. (2002). Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology, 92, 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A. (2002). Sequence alignment editor version 2.0. Oxford: University of Oxford.

    Google Scholar 

  • Reuveni, M., & Prusky, D. (2007). Improved control of moldy-core decay (Alternaria alternata) in red delicious apple fruit by mixtures of DMI fungicides and captan. European Journal of Plant Pathology, 118, 349–357.

    Article  CAS  Google Scholar 

  • Reuveni, M., & Sheglov, D. (2002). Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Protection, 21, 951–955.

    Article  CAS  Google Scholar 

  • Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits of ß-aminobutyric acids and potassium phosphates. Plant Disease, 87, 933–936.

    Article  CAS  PubMed  Google Scholar 

  • Reuveni, M., Sheglov, N., Eshel, D., Prusky, D., & Ben-Arie, R. (2007). Virulence and the production of endo-1, 4-β-glucanase by isolates of Alternaria alternata involved in moldy core of apples. Phytopathology, 155, 50–55.

    Article  CAS  Google Scholar 

  • Rharmitt, S., Ha, M., Hajjaj, H., Scordino, F., Giosa, D., Giuffrè, L., Barreca, S., Criseo, G., & Romeo, O. (2016). Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco. International Journal of Food Microbiology, 217, 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson, P. G., & Spotts, R. A. (1995). Postharvest decay of winter pear and apple fruit caused by species of Penicillium. Phytopathology, 85, 103–110.

    Article  Google Scholar 

  • Seifert, K. A., Samson, R. A., DeWaard, J. R., Houbraken, J., Levesque, C. A., Moncalvo, J.-M., et al. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences, 104, 3901–3906.

    Article  CAS  Google Scholar 

  • Serdani, M., Crous, P. W., Holz, G., & Petrini, O. (1998). Endophytic fungi associated with core rot of apples in South Africa, with specific reference to Alternaria species. Sydowia, 50, 257–271.

    Google Scholar 

  • Serdani, M., Kang, J. C., Andersen, B., & Crous, P. W. (2002). Characterisation of Alternaria species-groups associated with core rot in South Africa. Mycological Research, 106, 561–569.

    Article  Google Scholar 

  • Serra, R., Peterson, S., & Vena, A. (2008). Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Research in Microbiology, 159, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Shtienberg, D. (2012). Effects of host physiology on the development of core rot, caused by Alternaria alternata, in red delicious apples. Phytopathology, 102, 769–778.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, E. G. (2007). Alternaria. An Identification Manual. Utrecht: CBS Fungal Biodiversity Centre.

    Google Scholar 

  • Skouboe, P., Frisvad, J. C., Taylor, J. W., Lauritsen, D., Boysen, M., & Rossen, L. (1999). Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research, 103, 873–881.

    Article  CAS  Google Scholar 

  • Spotts, R. A. (1990). Moldy core and core rot. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of apple and pear diseases (pp. 29–30). St. Paul: APS Press, The American Phytopathological Society.

    Google Scholar 

  • Spotts, R. A., Holmes, R. J., & Washington, W. S. (1988). Factors affecting wet core rot of apples. Australasian Plant Pathology, 17, 53–57.

    Article  Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version (p. 4). Massachusetts: Sinauer Associates, Sunderland.

    Google Scholar 

  • Taylor, J. (1955). Apple black rot in Georgia and its control. Phytopathology, 45, 392–398.

    Google Scholar 

  • Theron, D. J., & Holz, G. (1991). Dry rot of potatoes caused by Gliocladium roseum. Plant Pathology, 40, 302–305.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Walt, L., Spotts, R. A., Visagie, C. M., Jacobs, K., Smit, F. J., & McLeod, A. (2010). Penicillium species associated with preharvest wet core rot in South Africa and their pathogenicity on apple. Plant Disease, 94, 666–675.

    Article  CAS  PubMed  Google Scholar 

  • Van der Walt, L., van der Walt, L., Spotts, R. A., Ueckermann, E. A., Smit, F. J., Jensen, T., & McLeod, A. (2011). The association of Tarsonemus mites (Acari: Heterostigmata) with different apple developmental stages and apple core rot diseases. International Journal of Acarology, 37(S1), 71–84.

    Article  Google Scholar 

  • Vilanova, L., Teixidó, N., Torres, R., Usall, J., & Viñas, I. (2012). The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. International Journal of Food Microbiology, 157(3), 360–367. https://doi.org/10.1016/j.ijfoodmicro.2012.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Vico, I., Gaskins, V., Duduk, N., Vasić, M., Yu, J. J., Peter, K. A., & Jurick, W. M. (2014). First report of causing blue mold on stored apple fruit in Serbia. Plant Disease, 98(10), 1430–1430.

    Article  CAS  PubMed  Google Scholar 

  • Volk, G. M., Chao, C. T., Norelli, J., Brown, S. K., Fazio, G., Peace, C., McFerson, J., Zhong, G.-Y., & Bretting, P. (2015). The vulnerability of US apple (Malus) genetic resources. Genetic Resources and Crop Evolution, 62, 765–794.

    Article  Google Scholar 

  • Wenneker, M., Pham, K. T. K., Lemmers, M. E. C., de Boer, F. A., van der Lans, A. M., van Leeuwen, P. J., Hollinger, T. C., & Thomma, B. P. H. (2016). First report of Fusarium avenaceum causing wet core rot of ‘Elstar’ apples in the Netherlands. Plant Disease, 100, 1501.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and application (pp. 315–322). New York: Academic Press Inc.

    Google Scholar 

  • Woudenberg, J. H., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75(1), 171–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., de Vries, M., Stielow, J. B., Thomma, B. P. H. J., & Crous, P. W. (2015). Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82, 1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported through project and MSc bursary funding by HORTGRO and the National Research Foundation (THRIP). We would like to thank the South African fruit growers in the Witzenberg Valley for participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Meitz-Hopkins.

Electronic supplementary material

ESM 1

(PDF 292 kb)

ESM 2

(DOCX 29 kb)

ESM 3

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basson, E., Meitz-Hopkins, J.C. & Lennox, C.L. Morphological and molecular identification of fungi associated with South African apple core rot. Eur J Plant Pathol 153, 849–868 (2019). https://doi.org/10.1007/s10658-018-1601-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1601-x

Keywords

Navigation