Skip to main content
Log in

Dactylonectria torresensis as the Main Component of the Black Root Rot Complex of Strawberries and Raspberries in Northern Germany

Dactylonectria torresensis als wichtigste Komponente der Schwarzen Wurzelfäule an Erdbeeren und Himbeeren in Norddeutschland

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

In a long-term survey of black root rot of strawberries and raspberries in Northern Germany in 2007–2014, fungi with and without Cylindrocarpon-like anamorphs were isolated as potential pathogens. Dactylonectria torresensis was the most common species, being isolated from 18% of strawberry roots obtained from nursery plants and 37% of roots from production fields, as well as 21% and 29% (respectively) of raspberry roots. Less frequently isolated fungi with Cylindrocarpon-like anamorphs included Ilyonectria crassa, Ilyonectria sp. 2, I. pseudodestructans, I. robusta, C. obtusisporium and Ilyonectria sp. 1. Severe disease symptoms were reproduced by artificial inoculation of strawberries with D. torresensis, Icrassa and Ilyonectria sp. 2, milder symptoms with C. obtusisporium. A wide range of other root-pathogenic fungi such as Fusarium oxysporum, Verticillium dahliae, Ceratobasidium fragariae, Gnomoniopsis fructicola, Hainesia lythri, and species of Cadophora, Leptodontidium, Pythium, Phytophthora, Plectosporella, Pestalotiopsis and Truncatella were either isolated only sporadically or were not associated with black root rot symptoms, suggesting that they did not play any major role in this disease in Northern Germany. Visible disease symptoms and high frequencies of D. torresensis isolations in many batches of nursery plants indicated that these may comprise a major source of contamination of production fields. The previously unrecognised prominence of D. torresensis resolves a long-standing puzzle concerning the cause of the ongoing black root rot epidemic in Northern German strawberry and raspberry production.

Zusammenfassung

In einer Langzeitstudie der Schwarzen Wurzelfäule an Erdbeeren und Himbeeren in Norddeutschland von 2007 bis 2014 wurden Pilze mit und ohne Cylindrocarpon-Sporenstadien als potentielle Krankheitserreger isoliert. Die häufigste Art, Dactylonectria torresensis, wurde aus 18 % der Wurzeln von Erdbeer-Jungpflanzen sowie aus 37 % der Wurzeln von Pflanzen aus Produktionsanlagen isoliert. An Himbeeren betrugen die entsprechenden Werte 21 % und 29 %. Weitere Pilze mit Cylindrocarpon-ähnlichen Konidienstadien waren Ilyonectria crassa, Ilyonectria sp. 2, I. pseudodestructans, I. robusta, C. obtusisporium und Ilyonectria sp. 1. Schwere Symptome der Schwarzen Wurzelfäule wurden durch künstliche Inokulation gesunder Erdbeerpflanzen mit D. torresensis, Icrassa und Ilyonectria sp. 2 reproduziert, mildere Symptome mit C. obtusisporium. Andere pathogene Pilze wie Fusarium oxysporum, Verticillium dahliae, Ceratobasidium fragariae, Gnomoniopsis fructicola, Hainesia lythri sowie Arten von Cadophora, Leptodontidium, Pythium, Phytophthora, Plectosporella, Pestalotiopsis und Truncatella wurden entweder nur sporadisch isoliert oder waren nicht mit den Krankheitssymptomen assoziiert, so dass kein ursächlicher Zusammenhang mit der Schwarzen Wurzelfäule in Norddeutschland angenommen werden kann. Sichtbare Krankheitssymptome sowie der häufige Nachweis von D. torresensis in Vermehrerware deuteten auf die Ausbreitung der Krankheit über diese Route hin. Die bislang nicht beschriebene Rolle von D. torresensis beantwortet lange bestehende Fragen zur Ursache der aktuellen Epidemie der Schwarzen Wurzelfäule in der norddeutschen Erdbeer- und Himbeerproduktion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Booth C (1966) The genus Cylindrocarpon. Mycol Pap 104:1–56

    Google Scholar 

  • Botha A (2002) A study of the etiology and epidemiology of black root rot of strawberries in the Western Cape. University of Stellenbosch, Stellenbosch (M.Sc. Thesis)

    Google Scholar 

  • Botha A, Denman S, Lamprecht SC, Mazzola M, Crous PW (2003) Characterisation and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australasian Plant Pathol 32:195–201

    Article  Google Scholar 

  • Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW (2012a) Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Progress 11:655–688

    Article  Google Scholar 

  • Cabral A, Rego C, Nascimento T, Oliveira H, Groenewald JZ, Crous PW (2012b) Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol 116:62–80

    Article  CAS  PubMed  Google Scholar 

  • Carlucci A, Raimondo ML, Santos J, Phillips AJL (2012) Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia 28:34–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedeño L, Carrero C, Quintero K, Pino H, Espinoza W (2004) Cylindrocarpon destructans var. destructans and Neonectria discophora var. rubi associated with black foot rot on blackberry (Rubus glaucus Benth.) in Mérida, Venezuela. Interciencia 29:455–460

    Google Scholar 

  • Chamorro M, Aguado A, De los Santos B (2016) First report of root and crown rot caused by Pestalotiopsis clavispora (Neopestalotiopsis clavispora) on strawberry in Spain. Plant Dis 100:1495

    Article  Google Scholar 

  • Crous PW, Groenewald JZ, Risede J‑M, Simoneau P, Hywel-Jones NL (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–429

    Google Scholar 

  • Eikemo H, Klemsdal SS, Riisberg I, Bonants P, Stensvand A, Tronsmo AM (2004) Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycol Res 108:317–324

    Article  CAS  PubMed  Google Scholar 

  • Ellis MA, Converse RH, Williams RN, Williamson B (eds) (1991) Compendium of raspberry and blackberry diseases. APS Press, St. Paul

    Google Scholar 

  • Erper I, Agustí-Brisach C, Tunali B, Armengol J (2013) Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. Eur J Plant Pathol 136:291–300

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  • Glynou K, Ali T, Buch A‑K, Kia SH, Ploch S, Xia X, Çelik A, Thines M, Maciá-Vicente JG (2016) The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microbiol 18:2418–2434

    Article  CAS  PubMed  Google Scholar 

  • Grantina-Ievina L, Kalniņa I (2016) Strawberry crown rot – a common problem in 2015. Environ Exper Biol 14:51–52

    Google Scholar 

  • Harris DC, Yang JR (1996) The relationship between the amount of Verticillium dahliae in soil and the incidence of strawberry wilt as a basis for disease risk prediction. Plant Pathol 45:106–114

    Article  Google Scholar 

  • Hyakumachi M, Priyatmojo A, Kubota M, Fukui H (2005) New anastomosis groups, AG-T and AG-U, of binucleate Rhizoctonia spp. causing root and stem rot of cut-flower and miniature roses. Phytopathology 95:784–792

    Article  PubMed  Google Scholar 

  • Jankowiak R, Stępniewska H, Szwagrzyk J, Bilański P, Gratzer G (2016a) Characterization of Cylindrocarpon-like species associated with litter in the old-growth beech forests of Central Europe. For Pathol 46:582–594

    Article  Google Scholar 

  • Jankowiak R, Bilański P, Paluch J, Kołodziej Z (2016b) Fungi associated with dieback of Abies alba seedlings in naturally regenerating forest ecosystems. Fungal Ecol 24:61–69

    Article  Google Scholar 

  • Johnston PR, Park D, Manning MA (2010) Neobulgaria alba sp. nov. and its Phialophora-like anamorph in native forests and kiwifruit orchards in New Zealand. Mycotaxon 113:385–396

    Article  Google Scholar 

  • Klemsdal SS, Herrero ML, Wanner LA, Lund G, Hermansen A (2008) PCR-based identification of Pythium spp. causing cavity spot in carrots and sensitive detection in soil samples. Plant Pathol 57:877–886

    Article  CAS  Google Scholar 

  • Koike ST, Kirkpatrick SC, Gordon TR (2009) Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Dis 93:1077

    Article  Google Scholar 

  • LaMondia JA (2003) Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in strawberry black root rot. J Nematol 35:17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaMondia JA, Martin SB (1989) The influence of Pratylenchus penetrans and temperature on black root rot of strawberry by binucleate Rhizoctonia spp. Plant Dis 73:107–110

    Article  Google Scholar 

  • Lieten P (2015) Pestalotiopsis: neue Wurzelkrankheit in Erdbeeren. Spargel Erdb Profi 4:46–47

    Google Scholar 

  • Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2014) Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol Mediterr 53:515–532

    CAS  Google Scholar 

  • López NC, Casas C, Sopo L, Rojas A, Del Portillo P, Cepero de García MC, Restrepo S (2009) Fusarium species detected in onychomycosis in Colombia. Mycoses 52:350–356

    Article  Google Scholar 

  • Lutz M, Lauber HP (1981) Das Wurzelsterben der Himbeeren. Erwerbsobstbau 23:237–238

    Google Scholar 

  • Maas JL (ed) (1998) Compendium of strawberry diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Martin SB (1988) Identification, isolation frequency, and pathogenicity of anastomosis groups of binucleate Rhizoctonia spp. from strawberry roots. Phytopathology 78:379–384

    Article  Google Scholar 

  • Matthies A, Lankes C (1993) Das Wurzelsterben der Himbeere. Erwerbsobstbau 35:63–70

    Google Scholar 

  • Matsumoto C, Kageyama K, Suga H, Hyakumachi M (2000) Intraspecific DNA polymorphisms of Pythium irregulare. Mycol Res 104:1333–1341

    Article  CAS  Google Scholar 

  • McKinley RT, Talboys PW (1979) Effects of Pratylenchus penetrans on development of strawberry wilt caused by Verticillium dahliae. Ann Appl Biol 92:347–357

    Article  Google Scholar 

  • Montgomerie IG (1967) Pathogenicity of British isolates of Phytophthora fragariae and their relationship with American and Canadian races. Trans Brit Mycol Soc 50:57–67

    Article  Google Scholar 

  • Morocko I, Fatehi J, Gerhardson B (2006) Gnomonia fragariae, a cause of strawberry root rot and petiole blight. Eur J Plant Pathol 114:235–244

    Article  Google Scholar 

  • Nagano Y, Konishi M, Nagahama T, Kubota T, Abe F, Hatada Y (2016) Retrieval of deeply buried culturable fungi in marine subsurface sediments, Suruga-Bay, Japan. Fungal Ecol 20:256–259

    Article  Google Scholar 

  • Nemec S, Sanders H (1970) Pythium species associated with strawberry root necrosis in Southern Illinois. Plant Dis Rep 54:59–61

    Google Scholar 

  • Outram MA, Jones EE, Jaspers MV, Ridway HJ (2014) Development of a PCR-RFLP method to distinguish species within the Ilyonectria macrodidyma complex. N Z Plant Prot 67:151–156

    CAS  Google Scholar 

  • Pramateftaki PV, Antoniou PP, Typas MA (2000) The complete DNA sequence of the nuclear ribosomal RNA gene complex of Verticillium dahliae: intraspecific heterogeneity within the intergenic spacer region. Fungal Genet Biol 29:19–27

    Article  CAS  Google Scholar 

  • Rego C, Nascimento T, Cabral A, Silva MJ, Oliveira H (2009) Control of grapevine wood fungi in commercial nurseries. Phytopathol Mediterr 48:128–135

    CAS  Google Scholar 

  • Reis P, Cabral A, Nascimento T, Oliveira H, Rego C (2013) Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathol Mediterr 52:335–346

    Google Scholar 

  • Rigotti S, Viret O, Gindrat D (2003) Fungi from symptomless strawberry plants in Switzerland. Phytopathol Mediterr 42:85–88

    Google Scholar 

  • Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, Esker PD, Giesler LJ, Jardine DJ, Malvick DK, Markell SG, Nelson BD, Robertson AE, Rupe JC, Smith DL, Sweets LE, Tenuta AU, Wise KA, Chilvers MI (2017) Oomycete species associated with soybean seedlings in North America – part I: identification and pathogenicity characterization. Phytopathology 107:280–292

    Article  Google Scholar 

  • Seemüller E (1970) Über die Schwarze Wurzelfäule und Rhizomfäule der Erdbeere. Erwerbsobstbau 12:64–66

    Google Scholar 

  • Seemüller E, Riedel M (1980) um Auftreten der Roten Wurzelfäule der Erdbeere (Phytophthora fragariae) in Süddeutschland. Nachrichtenbl Deut Pflanzenschutzd 32:81–85

    Google Scholar 

  • Smith D, Onions AHS (1983) The preservation and maintenance of living Fungi. Kew, CAB

    Google Scholar 

  • Stefańczyk E, Sobkowiak S, Brylińska M, Śliwka J (2016) Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. Eur J Plant Pathol 145:871–884

    Article  Google Scholar 

  • Sutton BC, Gibson IAS (1977) Pezizella oenotherae (conidial state: Hainesia lythri). CMI Descriptions of Pathogenic Fungi and Bacteria 535

  • Walker DM, Castlebury LA, Rossman AY, Sogonov MV, White JF (2010) Systematics of genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations and morphology. Mycologia 102:1479–1496

    Article  PubMed  Google Scholar 

  • Weber RWS, Zabel D (2011) White haze and scarf skin, two little-known cosmetic defects of apples in Northern Germany. Eur J Hort Sci 76:45–50

    Google Scholar 

  • Weber RWS, Stenger E, Meffert A, Hahn M (2004) Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: A strategy for habitat conquest? Mycol Res 108:662–671

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wilcox WF, Scott PH, Hamm PB, Kennedy DM, Duncan JM, Brasier CM, Hansen EM (1993) Identity of a Phytophthora species attacking raspberry in Europe and North America. Mycol Res 97:817–831

    Article  Google Scholar 

  • Wilhelm S, Nelson PE, Thomas HE, Johnson H (1972) Pathology of strawberry root rot caused by Ceratobasidium species. Phytopathology 62:700–705

    Article  Google Scholar 

  • Wing KB, Pritts MP, Wilcox WF (1994) Strawberry black root rot: A review. Adv Strawberry Res 13:13–19

    Google Scholar 

  • Wing KB, Pritts MP, Wilcox WF (1995) Biotic, edaphic, and cultural factors associated with strawberry black root rot in New York. Hort Sci 30:86–90

    Google Scholar 

  • Yuen GY, Schroth MN, Weinhold AR, Hancock JG (1991) Effects of soil fumigation with methyl bromide and chloropicrin on root health and yield of strawberry. Plant Dis 75:416–420

    Article  CAS  Google Scholar 

  • Zeller SM (1936) Verticillium wilt of cane fruits. Or State Agric Coll Agric Exp Stn Bull 344:1–25

    Google Scholar 

  • Zinkernagel V (1970a) Die Verticilliumwelke als bodenbürtige Krankheit in Erdbeerkulturen Norddeutschlands. Erwerbsobstbau 12:23–26

    Google Scholar 

  • Zinkernagel V (1970b) Bodenbürtige Krankheiten in Erdbeerkulturen Norddeutschlands und ihre Ursachen. II. Wurzel- und Rhizomfäulen der Erdbeere. Z Pflanzenkrankh Pflanzensch 77:65–75

    Google Scholar 

Download references

Acknowledgements

We are grateful to Steffi Kutz and Andrea Lutze (Obstbauversuchsring des Alten Landes) for laboratory assistance, and to several strawberry and raspberry producers who funded part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland W. S. Weber.

Ethics declarations

Conflict of interest

R.W.S. Weber and A.-P. Entrop declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, R.W.S., Entrop, AP. Dactylonectria torresensis as the Main Component of the Black Root Rot Complex of Strawberries and Raspberries in Northern Germany. Erwerbs-Obstbau 59, 157–169 (2017). https://doi.org/10.1007/s10341-017-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-017-0343-9

Keywords

Schlüsselwörter

Navigation