Skip to main content

Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA, Proteins, and Metabolites

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 69))

The present state of different laser-assisted microdissection methods and their application in various disciplines of plant science is reviewed. The first part of the present review describes the basic effects of a laser beam on biological tissue, and following sections dealing with practical aspects of sample preparation and the technologies implemented in laser-assisted microdissection procedures. An attempt is made to distinguish laser-capture microdissection from laser cutting, to distinguish different varieties of laser cutting, and to discuss the advantages and drawbacks of the various methods for specific applications. The second part of the review covers applications of laser-assisted microdissection in various areas of plant science. Using lasers to conduct microsurgery on plant tissue and to dissect chromosome parts are two highly specialized areas that are discussed. RNA isolation and cell-specific gene expression analysis are the most frequent reasons for using laser-assisted microdissection methods, so a section comprising recent applications is included. Although proteomic methods for analyzing the contents of specific cell populations are available, proteins have been analyzed infrequently in laser-microdissected plant tissue. Therefore, the corresponding section also includes examples from animal samples. The final section is dedicated to the emerging field of cell type-specific metabolite profiling, including secondary metabolites, in extracts of laser-microdissected plant samples by mass spectrometry and nuclear magnetic resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angeles G, Berrio-Sierra J, Joseleau J-P, Lorimier P, Lefèbvre A, Ruel K (2006) Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis. Planta 224:228–232.

    PubMed  Google Scholar 

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki KI (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408.

    PubMed  Google Scholar 

  • Ball HJ, Hunt NH (2004) Needle in a haystack: microdissecting the proteome of a tissue. Amino Acids 27:1–7.

    PubMed  Google Scholar 

  • Bhattacharya SH, Gal AA, Murray KK (2003) Laser capture microdissection MALDI for direct analysis of archival tissue. J Proteome Res 2:95–98.

    PubMed  Google Scholar 

  • Boulnois JL (1986) Photophyiscal processes in recent medical laser developments: a review. Lasers Med Sci 1:47–66.

    Google Scholar 

  • Brandt S (2005) Microgenomics: gene expression analysis at the tissue-specific and single-cell levels. J Exp Bot 56:495–505.

    PubMed  Google Scholar 

  • Brandt S, Kehr J, Walz C, Imlau A, Willmitzer L, Fisahn J (1999) A rapid method for detection of plant gene transcripts from single epidermal, mesophyll and companion cell of intacts leaves. Plant J 20:245–250.

    PubMed  Google Scholar 

  • Brandt S, Walz C, Schad M, Pavlovic N, Kehr J (2003) A simple, chisel-assisted mechanical microdissection system for harvesting homogenous plant tissue suitable for the analysis of nucleic acids and proteins. Plant Mol Biol Rep 21:417–427.

    Google Scholar 

  • Brinkmann R, Hansen C, Mohrenstecher D, Scheu M, Birngruber R (1996) Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring. IEEE J Sel Top Quantum Electron 2:826–835.

    Google Scholar 

  • Burgemeister R (2005) New aspects of laser microdissection in research and routine. J Histochem Cytochem 53:409–412.

    PubMed  Google Scholar 

  • Cai S, Lashbrook CC (2006) Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant J 48:628–637.

    PubMed  Google Scholar 

  • Caldwell RL, Caprioli RM (2005) Tissue profiling by mass spectrometry. Mol Cell Proteomics 4:394–401.

    PubMed  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical chemistry (I). Freeman, New York.

    Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123.

    PubMed  Google Scholar 

  • Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodríguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, Río LA del, Barroso JB (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994.

    PubMed  Google Scholar 

  • Cox KH, Goldberg RB (1988) Analysis of gene expression. In: Shaw CH (ed) Plant molecular biology: a practical approach. IRL, Oxford, pp 1–34.

    Google Scholar 

  • Craven RA, Banks RE (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1:1200–1204.

    PubMed  Google Scholar 

  • Craven RA, Totty N, Harnden P, Selby PJ, Banks RE (2002) Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis. Am J Pathol 160:815–822.

    PubMed  Google Scholar 

  • Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:398–406.

    Google Scholar 

  • Day RC, McNoeb LA, Macknight RC (2007) Transcript analysis of laser microdissected plant cells. Physiol Plant 129:267–282.

    Google Scholar 

  • Doukas AG, McAucliffe DJ, Lee S, Venugopalan V, Flotte TJ (1995) Physical factors involved in stress-wave-induced cell injury–the effect of stress gradient. Ultrasound Med Biol 21:961–975.

    PubMed  Google Scholar 

  • Elvers D, Remer L, Arnold N, Bäuerle D (2005) Laser microdissection of biological tissues: process optimization. Appl Phys A 80:55–59.

    Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001.

    PubMed  Google Scholar 

  • Emmony DC, Geerken BM, Straaijer A (1976) Interaction of 10.6 mm laser radiation with liquids. Infrared Phys 16:87–92.

    Google Scholar 

  • Frenz M, Konz F, Pratisto H, Weber HP, Silenok AS, Konov VI (1998) Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminium garnet laser in water. J Appl Phys 84:5905–5912.

    Google Scholar 

  • Fukui K, Minezawa M, Kamisugi Y, Ishikawa M, Ohmido N, Yanagisawa T, Fujishita M, Sakai E (1992) Microdissection of plant chromosomes by argon-ion laser beam. Theor Appl Genet (1992) 84:787–791.

    Google Scholar 

  • Garrison BJ, Srinivasan R (1985) Laser ablation of organic polymers–microscopic models for photochemical and thermal-processes. J Appl Phys 57:2909–2914.

    Google Scholar 

  • Gitomer SJ, Jones RD (1991) Laser-produced plasmas in medicine. IEEE Trans Plasma Sci 19:1209–1219.

    Google Scholar 

  • Goldsworthy SM, Stockton PS, Trempus CS, Foley JF, Maronpot RR (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinogen 25:86–91.

    Google Scholar 

  • Greulich KO, Weber G (1992) The light microscope on its way from an analytical to a preparative tool. J Microsc 167:127–151.

    Google Scholar 

  • Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL, Chuaqui R, Valasco A, Gillespie J, Emmert-Buck M, Liotta LA, Petricoin EF (2003) Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3:2142–2146.

    PubMed  Google Scholar 

  • Hobza R, Lengerova M, Cernohorska M, Rubes J, Vyskot B (2004) FAST-FISH with laser beam microdissected DOP-PCR probe distinguishes the sex chromosomes of Silene latifolia. Chromosome Res 12:245–250.

    PubMed  Google Scholar 

  • Hölscher D, Schneider B (2007) Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy, an alliance for cell type-specific metabolite profiling. Planta 225:763–770.

    PubMed  Google Scholar 

  • Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2promoter-GFP-marker companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945.

    PubMed  Google Scholar 

  • Jiang K, Zhang S, Lee S, Tsai G, Kim K, Huang H, Chilcott C, Zhu T, Feldman LJ (2006) Transcription profile analyses identify genes and pathways central to root cap functions in maize. Plant Mol Biol 60:343–363.

    PubMed  Google Scholar 

  • Karrer EE, Lincoln JE, Hogenhout S, Bennett AB, Bostock RM, Martineau B, Lucas WJ, Gilchrist DG, Alexander D (1995) In situ isolation of messenger-RNA from individual plant-cells-creation of cell-specific cDNA libraries. Proc Natl Acad Sci USA 92:3814–3818.

    PubMed  Google Scholar 

  • Kawamura Y, Toyoda K, Namba S (1982) Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl Phys Lett 40:374–375.

    Google Scholar 

  • Kehr J (2003) Single cell technology. Curr Opin Plant Biol 6:1–5.

    Google Scholar 

  • Kerk N, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35.

    PubMed  Google Scholar 

  • Kitai MS, Popkov VL, Semchishen VA, Kharizov AA (1991) The physics of uv laser cornea ablation. IEEE J Quantum Electron 27:302–307.

    Google Scholar 

  • Klink VP, MacDonald M, Alkharouf N, Matthews BF (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59:969–983.

    Google Scholar 

  • Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes–a leap in NMR technology. Progr Nucl Mag Res Spec 46:131–155.

    Google Scholar 

  • Krasnov MM (1973) Laseropuncture of anterior chamber angle in glaucoma. Am J Ophthalmol 75:674–678.

    PubMed  Google Scholar 

  • Kubo Y, Klimek F, Kikuchi Y, Bannasch P, Hino O (1995) Early detection of knudson two-hits in preneoplastic renal cells of the eker rat model by the laser microdissection procedure. Cancer Res 55:989–990.

    PubMed  Google Scholar 

  • Kwapiszewska G, Meyer M, Bogumil R, Bohle RM, Seeger W, Weissmann N, Fink L (2004) Identification of proteins in laser-microdissected small cell numbers by SELDI-TOF and Tandem MS. BMC Biotechnol 4:30.

    PubMed  Google Scholar 

  • Lange BM (2005) Single-cell genomics. Curr Opin Plant Biol 8:236–241.

    PubMed  Google Scholar 

  • Li S-H, Schneider B, Gershenzon J (2007) Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta 225:771–779.

    PubMed  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56.

    PubMed  Google Scholar 

  • Lochmann H, Bazzanella A, Bächmann K (1998) Analysis of solutes and metabolites in single plant cell vacuoles by capillary electrophoresis. J Chromatogr 817:337–343.

    Google Scholar 

  • Lubatschowski H, Heisterkamp A (2004) Interaction with biological tissue. In: Dausinger F, Lichtner F, Lubatschowski H (eds) Topics in applied physics, vol 96. Springer, Berlin Heidelberg New York, pp 91–104.

    Google Scholar 

  • Maiman TH (1960) Stimulated optical rotation in ruby. Nature 187:493–494.

    Google Scholar 

  • Matsunaga S, Kawano S, Michimoto T, Higashiyama T, Nakao S, Sakai A, Kuroiwa T (1999a) Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia. Plant Cell Physiol 40:60–68.

    PubMed  Google Scholar 

  • Matsunaga S, Schütze K, Donnison IS, Grant SR, Kuroiwa T, Kawano S (1999b) Single pollen typing combined with laser-mediated manipulation. Plant J 20:371–378.

    PubMed  Google Scholar 

  • Meier-Ruge W, Bielser W, Remy E, Hillenkamp F, Nitsche R, Unsöld R (1976) The laser in the Lowry technique for microdissection of freeze-dried tissue slices. Histochem J 8:387–40l.

    PubMed  Google Scholar 

  • Melle C, Ernst G, Schimmel B, Bleul A, Koscielny S, Wiesner A, Bogumil R, Möller U, Osterloh D, Halbhuber KJ, Eggeling F von (2003) Biomarker discovery and identification in laser microdissected head and neck squamous cell carcinoma with ProteinChip technology, two-dimensional gel electrophoresis, tandem mass spectrometry, and immunohistochemistry. Mol Cell Proteomics 2:443–452.

    PubMed  Google Scholar 

  • Melle C, Kaufmann R, Hommann M, Bleul A, Driesch D, Ernst G, Eggeling F von (2004) Proteomic profiling in microdissected hepatocellular carcinoma tissue using ProteinChip technology. Int J Oncol 24:885–891.

    PubMed  Google Scholar 

  • Monajembashi S, Cremer C, Cremer T, Wolfrum J, Greulich KO (1986) Microdissection of human-chromosomes by a laser microbeam. Exp Cell Res 167:262–265.

    PubMed  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594.

    PubMed  Google Scholar 

  • Nakada M, Komatsu M, Ochiai T, Ohtsu K, Nakazono M, Nishizawa NK, Nitta K, Nishiyama R, Kameya T, Kanno A (2006) Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Sci 170:143–150.

    Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596.

    PubMed  Google Scholar 

  • Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57:181–201.

    PubMed  Google Scholar 

  • Oraevsky AA, Jacques SL, Tittel FK (1995) Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions. J Appl Phys 78:1281–1290.

    Google Scholar 

  • Outlaw WH, Lowry OH (1977) Organic-acid and potassium accumulation in guard cells during stomatal opening. Proc Natl Acad Sci USA 74:4434–4438.

    PubMed  Google Scholar 

  • Palmer-Toy DE, Sarracino DA, Sgroi D, LeVangie R, Leopold PE (2000) Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem 46:1513–1516.

    PubMed  Google Scholar 

  • Paltauf G, Schmidt-Kloiber H (1995) Model study to investigate the contribution of spallation to pulsed-laser ablation of tissue. Lasers Surg Med 16:277–287.

    PubMed  Google Scholar 

  • Paltauf G, Schmidt-Kloiber H (1996). Microcavity dynamics during laser-induced spalltion of liquids and gels. Appl Phys A 62:303–311.

    Google Scholar 

  • Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin EF, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989.

    PubMed  Google Scholar 

  • Petry R, Schmitt M, Popp J (2003) Raman spectroscopy–a prospective tool in the life sciences. ChemPhysChem 4:14–30.

    PubMed  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, Friedemann G, Feucht W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and uv–visible spectroscopic titration. Physiol Plant 128:163–174.

    Google Scholar 

  • Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142:1427–1441.

    PubMed  Google Scholar 

  • Pühler A, Regitz M, Schmid RD (eds) (2000) Römpp Lexikon Biochemie und Molekularbiologie. Thieme, Stuttgart.

    Google Scholar 

  • Ramsay K, Wang Z, Jones MGK (2004) Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Mol Plant Pathol 5:587–592.

    Google Scholar 

  • Ramsay K, Jones MGK, Wang Z (2006) Laser capture microdissection: a novel approach to microanalysis of plant–microbe interactions. Mol Plant Pathol 7:429–435.

    Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083.

    PubMed  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2005) Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132:15–26.

    PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Le BH, Goldberg RB (2005) Differentiation and degeneration of cells that play a major role in tobacco anther dehiscence. Sex Plant Reprod 17:219–241.

    Google Scholar 

  • Scalenghe F, Turco E, Edstrom JE, Pirrotta V, Melli M (1981) Micro-dissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82:205–216.

    PubMed  Google Scholar 

  • Schad M, Lipton MS, Giavalisco P, Smith RD, Kehr J (2005a) Evaluation of two dimensional electrophoresis and liquid chromatography–tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26:2729–2738.

    PubMed  Google Scholar 

  • Schad M, Mungur R, Fiehn O, Kehr J (2005b) Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 1:2.

    PubMed  Google Scholar 

  • Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K (1998) Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys 83, 5458–5468.

    Google Scholar 

  • Schütze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737–742.

    PubMed  Google Scholar 

  • Scutt CP, Kamisugi Y, Sakai F, Gilmartin PM (1997) Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome 40:705–715.

    PubMed  Google Scholar 

  • Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, Lemoine NR, Crnogorac-Jurcevic T, Buechler MW, Friess H, Neoptolemos JP, Pennington SR, Simone NL, Remaley AT, Charboneau L, Petricoin EF III, Glickman JW, Emmert-Buck MR, Fleisher TA, Liotta LA (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol 156:445–452.

    Google Scholar 

  • Snow M, Snow R (1931) Experiments on phyllotaxis. I. The effect of isolating a primordium. Philos Trans R Soc Lond B Biol Sci 221:1–43.

    Google Scholar 

  • Solon AR, Aronson R, Gould G (1961) Physiological implications of laser beams. Science 134:1506–1508.

    PubMed  Google Scholar 

  • Srinivasan R (1986) Ablation of polymers and biological tissue by ultraviolet-lasers. Science 234:559–565.

    PubMed  Google Scholar 

  • Srinivasan R, Leigh W (1982) Ablative photodecomposition: action of far-ultraviolet laser radiation (193 nm) on poly(ethylene terephthalate) films. J Am Chem Soc 104:6784–6785.

    Google Scholar 

  • Srinivasan R, Mayne-Banton V (1982) Self developing photoetching of poly(ethylene-terephthalate) films by far ultraviolet excimer laser-radiation. Appl Phys Lett 41:576–578.

    Google Scholar 

  • Tomos AD, Sharrock RA (2001) Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. J Exp Bot 52:623–630.

    PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M (2006) GAMYB controls different sets of genes and its differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444.

    PubMed  Google Scholar 

  • Ventzek PLG, Gilgenbach RM, Ching CH, Lindley RA (1992) Schlieren and dye-laser resonance-absorption photographic investigations of KrF excimer laser-ablated atoms and molecules from polyimide, polyethylenterephthalate, and aluminium. J Appl Phys 72:1696–1706.

    Google Scholar 

  • Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644.

    PubMed  Google Scholar 

  • Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and anaosecond optical breakdown in water. J Acoust Soc Am 100:148–165.

    Google Scholar 

  • Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer DX, Noojin GD, Rockwell BA, Birngruber R (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B 68:271–280.

    Google Scholar 

  • Vogel A, Noack J, Huttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047.

    Google Scholar 

  • Walsh JT, Deutsch TF (1991) Measurement of Er-YAG laser ablation plume dynamics. Appl Phys B 52:217–224.

    Google Scholar 

  • Woll K, Borsuk LA, Stransky H, Nettleton D, Schnable PS, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139:1255–1267.

    PubMed  Google Scholar 

  • Wu S-L, Hancock WS, Goodrich GG, Kunitake ST (2003) An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3:1037–1046.

    PubMed  Google Scholar 

  • Wu YR, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127.

    PubMed  Google Scholar 

  • Xu BJ, Caprioli RM, Sanders ME, Jensen RA (2002) Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom 13:1292–1297.

    PubMed  Google Scholar 

  • Zang L, Toy DP, Hancock WS, Sgroi DC, Karger BL, J. (2004) Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and O-16/O-18 isotopic labeling. J Proteome Res 3:604–612.

    PubMed  Google Scholar 

  • Zhu XL, Shaw PN, Pritchard J, Newbury J, Hunt EJ, Barrett DA (2005) Amino acid analysis by micellar electrokinetic chromatography with laser-induced fluorescence detection: Application to nanolitre-volume biological samples from Arabidopsis thaliana and Myzus persicae. Electrophoresis 26:911–919.

    Google Scholar 

  • Zweig AD (1991) A thermomechanical model for laser ablation. J Appl Phys 70:1684–1691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hölscher, D., Schneider, B. (2008). Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA, Proteins, and Metabolites. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72954-9_6

Download citation

Publish with us

Policies and ethics