Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1998) Biological control of fusarium wilts: towards development of commercial products. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 15–36
Google Scholar
Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341. doi:10.1007/s10658-005-0233-0
Article
Google Scholar
Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
PubMed
CAS
Google Scholar
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983
PubMed
CAS
Article
Google Scholar
Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971. doi:10.1105/tpc.108.063164
PubMed
CAS
Article
Google Scholar
Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microb Interact 15:1147–1156
CAS
Article
Google Scholar
Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771. doi:10.1104/pp.107.109587
PubMed
CAS
Article
Google Scholar
Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995
CAS
Article
Google Scholar
Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008
PubMed
CAS
Article
Google Scholar
Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217–221. doi:10.1038/nature03356
PubMed
CAS
Article
Google Scholar
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159
PubMed
CAS
Article
Google Scholar
Bakker PAHM, Glandorf DCM, Viebahn M, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, Van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Leeuwenhoek 81:617–624
PubMed
CAS
Article
Google Scholar
Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of induced systemic resistance in rhizobacteria-mediated biocontrol of plant diseases. Can J Plant Pathol 25:5–9
Article
Google Scholar
Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243. doi:10.1094/PHYTO-97-2-0239
PubMed
Article
Google Scholar
Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10. doi:10.1055/s-2005-872705
PubMed
CAS
Article
Google Scholar
Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953. doi:10.1105/tpc.108.062158
PubMed
CAS
Article
Google Scholar
Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007) Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochem 39:1230–1233. doi:10.1016/j.soilbio.2006.12.026
CAS
Article
Google Scholar
Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258
Chapter
Google Scholar
Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695. doi:10.1038/ismej.2008.44
PubMed
CAS
Article
Google Scholar
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x
PubMed
CAS
Article
Google Scholar
Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026. doi:10.1093/jxb/erm298
PubMed
CAS
Article
Google Scholar
Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83
CAS
Article
Google Scholar
Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691. doi:10.1126/science.1174404
PubMed
CAS
Article
Google Scholar
Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341. doi:10.1016/j.pbi.2007.04.021
PubMed
CAS
Article
Google Scholar
Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350
PubMed
CAS
Article
Google Scholar
Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, McSpadden-Gardener BB (2004) Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307–318. doi:10.1016/j.femsec.2004.04.005
Article
CAS
Google Scholar
Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 323:742–744. doi:10.1126/science.1171647
Article
CAS
Google Scholar
Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant-Microb Interact 22:487–497. doi:10.1094/MPMI−22-5-0487
CAS
Article
Google Scholar
Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857
PubMed
CAS
Article
Google Scholar
Brigham LA, Woo H-H, Nicoll SM, Hawes MC (1995) Differential expression of proteins and mRNA from border cells and root-tips of pea. Plant Physiol 109:457–463
PubMed
CAS
Google Scholar
Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428
PubMed
CAS
Article
Google Scholar
Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. doi:10.1128/AEM.02188-07
PubMed
CAS
Article
Google Scholar
Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful "memories" of plants: evidence and possible mechanisms. Plant Sci 173:603–608. doi:10.1016/j.plantsci.2007.09.002
CAS
Article
Google Scholar
Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592
PubMed
CAS
Article
Google Scholar
Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388. doi:10.1111/j.1574-6941.2008.00645.x
PubMed
CAS
Article
Google Scholar
Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43
PubMed
CAS
Article
Google Scholar
Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mecahnisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92
Article
Google Scholar
Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523. doi:10.1046/j.1469-8137.2003.00686
CAS
Article
Google Scholar
Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476. doi:10.1105/tpc.105.036574
PubMed
CAS
Article
Google Scholar
Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216
PubMed
CAS
Article
Google Scholar
Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: Getting ready for battle. Mol Plant-Microb Interact 19:1062–1071. doi:10.1094/MPMI-19-1062
CAS
Article
Google Scholar
Cook RJ (2000) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116
PubMed
CAS
Article
Google Scholar
Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS Press, St. Paul
Google Scholar
Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684. doi:10.1111/j.1365-2672.2007.03701.x
PubMed
CAS
Article
Google Scholar
De Boer W, Klein-Gunnewiek PJA, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203
Article
Google Scholar
De Boer M, Born P, Kindt F, Keurentjes JJB, Van der Sluis I, Van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632. doi:10.1094/PHYTO.2003.93.5.626
PubMed
Article
Google Scholar
De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, Van Veen JA, De Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357. doi:10.1016/j.soilbio.2004.08.005
Article
CAS
Google Scholar
De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microb Interact 15:1173–1180. doi:10.1094/MPMI.2002.15.11.1173
Article
Google Scholar
De Weger LA, Van Arendonk JJCM, Recourt K, Van der Hofstad GAJM, Weisbeek PJ, Lugtenberg B (1988) Siderophore-mediated uptake Of Fe-3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J Bacteriol 170:4693–4698
PubMed
Google Scholar
Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250
PubMed
CAS
Article
Google Scholar
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445. doi:10.1093/mp/ssn019
PubMed
CAS
Article
Google Scholar
Djavaheri M. (2007) Iron-regulated metabolites of plant growth promoting Pseudomonas fluorescens WCS374: their role in induced systemic resistance. Ph.D. thesis, Utrecht University, the Netherlands
Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi:10.1080/713610853
CAS
Article
Google Scholar
Doornbos RF, Van Loon LC, Bakker PAHM (2009) Beneficial Pseudomonas spp. have altered root colonization on Arabidopsis thaliana mutants affected in the expression of induced systemic resistance. IOBC/WPRS Bull 43:307–310
Google Scholar
Driouich A, Durand C, Vicré-Gibouin M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14–19. doi:10.1016/j.tplants.2006.11.003
PubMed
CAS
Article
Google Scholar
Duijff BJ, Bakker PAHM, Schippers B (1994) Suppression Of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288
Article
Google Scholar
Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421
PubMed
CAS
Article
Google Scholar
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073_pnas.0507535103
PubMed
CAS
Article
Google Scholar
Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atßfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829. doi:10.1104/pp.103.021428
PubMed
CAS
Article
Google Scholar
Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant-pathogens by a ß-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221
CAS
Article
Google Scholar
Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956
PubMed
CAS
Article
Google Scholar
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756
PubMed
CAS
Article
Google Scholar
Garbeva P, Van Veen JA, Van Elsas JD (2004a) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455
PubMed
CAS
Article
Google Scholar
Garbeva P, Van Veen JA, Van Elsas JD (2004b) Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64. doi:10.1016/S0168-6496(03)00234-4
PubMed
CAS
Article
Google Scholar
Gelsomino A, Keijzer-Wolters AC, Cacco G, Van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth 38:1–15
CAS
Article
Google Scholar
Geraats B.P.J. (2003) The role of ethylene perception in plant disease resistance. Ph.D. thesis, Utrecht University, the Netherlands
Geraats BPJ, Bakker PAHM, Van Loon LC (2002) Ethylene insensitivity impairs resistance to soilborne pathogens in tobacco and Arabidopsis thaliana. Mol Plant-Microb Interact 15:1078–1085. doi:10.1094/MPMI.2002.15.10.1078
CAS
Article
Google Scholar
Geraats BPJ, Bakker PAHM, Lawrence CB, Achuo EA, Höfte M, Van Loon LC (2003) Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens. Phytopathology 93:813–821
PubMed
Article
Google Scholar
Geraats BPJ, Bakker PAHM, Linthorst HJM, Hoekstra J, Van Loon LC (2007) The enhanced disease susceptibility phenotype of ethylene-insensitive tobacco cannot be counteracted by inducing resistance or application of bacterial antagonists. Physiol Mol Plant Pathol 70:77–87. doi:10.1016/j.pmpp.2007.07.003
CAS
Article
Google Scholar
Glandorf DCM, Peters LGL, Van der Sluis I, Bakker PAHM, Schippers B (1993) Crop specificity of rhizosphere pseudomonads and the involvement of root agglutinins. Soil Biol Biochem 25:981–989
CAS
Article
Google Scholar
Glandorf DCM, Bakker PAHM, Van Loon LC (1997) Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Bot Neerl 46:85–104
CAS
Google Scholar
Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378. doi:10.1128/AEM.67.8.3371-3378.2001
PubMed
CAS
Article
Google Scholar
Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923
PubMed
CAS
Article
Google Scholar
Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117
CAS
Article
Google Scholar
Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68
PubMed
CAS
Article
Google Scholar
Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. doi:10.1080/07352680701572966
CAS
Article
Google Scholar
Gómez-Gómez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011
PubMed
Article
Google Scholar
Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256
PubMed
Article
Google Scholar
Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752. doi:10.1126/science.1173771
PubMed
CAS
Article
Google Scholar
Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129
PubMed
CAS
Article
Google Scholar
Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656
PubMed
CAS
Article
Google Scholar
Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869
PubMed
CAS
Article
Google Scholar
Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizophere microbial ecology and soil bacteriology research. Plant Soil 312:7–14. doi:10.1007/s11104-007-9514-z
CAS
Article
Google Scholar
Hawes MC (1990) Living plant cells released from the root cap: a regulator of microbial populations in the rhizosphere. Plant Soil 129:19–27
Article
Google Scholar
Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Z (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327
PubMed
CAS
Article
Google Scholar
Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133
PubMed
CAS
Article
Google Scholar
Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. doi:10.1126/science.1195979
PubMed
CAS
Article
Google Scholar
Heidel AJ, Clarke JD, Antonovics J, Dong X (2004) Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168:2197–2206. doi:10.1534/genetics.104.032193
PubMed
CAS
Article
Google Scholar
Heil M (2001) The ecological concept of costs of induced systemic resistance (ISR). Eur J Plant Pathol 107:137–146
Article
Google Scholar
Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 5:345–350. doi:10.1016/S1369-5266(02)00267-4
PubMed
Article
Google Scholar
Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67
PubMed
CAS
Article
Google Scholar
Hein JW, Wolfe GV, Blee KA (2008) Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Microb Ecol 55:333–343. doi:10.1007/s00248-007-9279-1
PubMed
CAS
Article
Google Scholar
Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78
Google Scholar
Höfte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth-promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Microbial siderophores, soil biology, vol 12. Springer, Berlin, pp 121–133
Chapter
Google Scholar
Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446
PubMed
CAS
Article
Google Scholar
Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189. doi:10.1094/PHYTO-96-0186
PubMed
CAS
Article
Google Scholar
Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201. doi:10.1111/j.1574-6941.2008.00535.x
PubMed
CAS
Article
Google Scholar
Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406
PubMed
CAS
Article
Google Scholar
Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microb Interact 16:851–858
CAS
Article
Google Scholar
Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396. doi:10.1128/AEM.68.5.2391-2396.2002
PubMed
CAS
Article
Google Scholar
Jenkinson D, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol. 5. Marcel Dekker, New York, pp 417–471
Google Scholar
Jeworutzki E, Roelfsema MRG, Anschutz U, Krol E, Elzenga TM, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378. doi:10.1111/j.1365-313X.2010.04155.x
PubMed
CAS
Article
Google Scholar
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286
PubMed
CAS
Article
Google Scholar
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91. doi:10.1126/science.1170025
PubMed
Article
CAS
Google Scholar
Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006a) Effects of the tomato pathogen Fusarium oxysporum f. sp radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microb Interact 19:1121–1126. doi:10.1094/MPMI-19-1121
CAS
Article
Google Scholar
Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006b) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microb Interact 19:250–256. doi:10.1094/MPMI-19-0250
CAS
Article
Google Scholar
Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236. doi:10.1146/annurev.micro.56.012302.161120
PubMed
CAS
Article
Google Scholar
Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350
PubMed
CAS
Article
Google Scholar
Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886
CAS
Article
Google Scholar
Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266
PubMed
CAS
Article
Google Scholar
Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant-Microb Interact 20:1512–1522. doi:10.1094/MPMI-20-12-1512
CAS
Article
Google Scholar
Knoester M, Van Loon LC, Van den Heuvel J, Hennig J, Bol JF, Linthorst HJM (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937
PubMed
CAS
Article
Google Scholar
Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. doi:10.1128/JB.187.18.6258-6264.2005
PubMed
CAS
Article
Google Scholar
Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844. doi:10.1104/pp.108.121392
PubMed
CAS
Article
Google Scholar
Kwak Y, Bakker PAHM, Glandorf DCM, Topham J, Paulitz T, Weller DM (2009) Diversity, virulence and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472–479. doi:10.1094/PHYTO-99-5-0472
PubMed
CAS
Article
Google Scholar
Latour X, Corberand TS, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456
PubMed
CAS
Google Scholar
Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Dordrecht
Google Scholar
Lawton KA, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant-Microb Interact 8:863–870
CAS
Article
Google Scholar
Leeman M, Van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1995a) Biocontrol of fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–1305
Article
Google Scholar
Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664
Article
Google Scholar
Leeman M, Den Ouden EM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155
CAS
Article
Google Scholar
Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995) Effect of two Plant species, flax (Linum usitatissinum L.) and tomato (Lycoppersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012
PubMed
CAS
Google Scholar
Little AEF, Robinson CJ, Peterson SB, Raffa KE, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401. doi:10.1146/annurev.micro.030608.101423
PubMed
CAS
Article
Google Scholar
Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472. doi:10.1016/j.pbi.2007.08.008
PubMed
CAS
Article
Google Scholar
Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microb Interact 4:5–13
CAS
Article
Google Scholar
Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105
PubMed
CAS
Google Scholar
Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363
PubMed
CAS
Google Scholar
Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310. doi:10.1007/s00425-006-0349-2
PubMed
CAS
Article
Google Scholar
Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490
PubMed
CAS
Article
Google Scholar
Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Leeuwenhoek 81:373–383. doi:10.1023/A:1020596903142
PubMed
CAS
Article
Google Scholar
Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121. doi:10.1016/S0065-2164(03)01004-9
PubMed
CAS
Article
Google Scholar
Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403. doi:10.1038/nature00962
PubMed
CAS
Article
Google Scholar
Mauch-Mani B, Métraux JP (1998) Salicylic acid and systemic acquired resistance to pathogen attack. Ann Bot 82:535–540
CAS
Article
Google Scholar
Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Leeuwenhoek 92:367–389. doi:10.1007/s10482-007-9167-1
PubMed
Article
Google Scholar
Métraux J-P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006
PubMed
Article
Google Scholar
Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. doi:10.1111/J.1364-3703.2004.00276.X
PubMed
Article
Google Scholar
Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742. doi:10.1093/jxb/erp053
PubMed
CAS
Article
Google Scholar
Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987
PubMed
CAS
Article
Google Scholar
Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944
PubMed
CAS
Article
Google Scholar
Nawrath C, Métraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404
PubMed
CAS
Article
Google Scholar
Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726
PubMed
CAS
Google Scholar
Newman MA, Dow JM, Molinaro A, Parrilli M (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13:69–84. doi:10.1177/0968051907079399
PubMed
CAS
Article
Google Scholar
Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373. doi:10.1016/j.tim.2010.06.002
PubMed
CAS
Article
Google Scholar
Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351–357. doi:10.1111/j.1574-6941.2007.00332.x
PubMed
CAS
Article
Google Scholar
Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66:4372–4377
PubMed
CAS
Article
Google Scholar
Nühse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526
PubMed
Article
Google Scholar
Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839
PubMed
CAS
Article
Google Scholar
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. doi:10.1111/j.1462-2920.2006.01202.x
PubMed
CAS
Article
Google Scholar
Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. doi:10.1126/science.1147113
PubMed
CAS
Article
Google Scholar
Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199. doi:10.1046/j.1365-3040.2003.00956.x
CAS
Article
Google Scholar
Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464. doi:10.1016/j.pbi.2004.05.006
PubMed
CAS
Article
Google Scholar
Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237
PubMed
CAS
Article
Google Scholar
Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580
PubMed
CAS
Article
Google Scholar
Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134
CAS
Article
Google Scholar
Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544
CAS
Article
Google Scholar
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi:10.1038/nchembio.164
PubMed
CAS
Article
Google Scholar
Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266. doi:10.1016/j.tplants.2004.04.008
PubMed
CAS
Article
Google Scholar
Postma J, Van Veen JA (1990) Habitable pore space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb Ecol 19:149–161
Article
Google Scholar
Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates—signals in plant-microbe interactions. J Plant Growth Regul 23:211–222. doi:10.1007/s00344-004-0031-5
CAS
Google Scholar
Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523. doi:10.1111/j.1469-8137.2008.02578.x
PubMed
CAS
Article
Google Scholar
Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081
Article
Google Scholar
Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547. doi:10.1023/A:1020501420831
PubMed
CAS
Article
Google Scholar
Raaijmakers JM, De Bruijn I, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microb Interact 19:699–710. doi:10.1094/MPMI-19-0699
CAS
Article
Google Scholar
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi:10.1007/s11104-008-9568-6
CAS
Article
Google Scholar
Ran LX, Van Loon LC, Bakker PAHM (2005) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355. doi:10.1094/PHYTO-95-1349
PubMed
CAS
Article
Google Scholar
Ranjard L, Poly F, Combrisson J, Richaume A, Gourbière F, Thioulouse J, Nazaret S (2000) Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb Ecol 39:263–272
PubMed
CAS
Google Scholar
Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S, Lemanceau P (2006) Effect of ferritin overexpression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots. FEMS Microbiol Ecol 58:492–502. doi:10.1111/j.1574-6941.2006.00174.x
PubMed
CAS
Article
Google Scholar
Robin A, Mazurier S, Mougel C, Vansuyt G, Corberand T, Meyer J-M, Lemanceau P (2007) Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 9:1724–1737. doi:10.1111/j.1462-2920.2007.01290.x
PubMed
CAS
Article
Google Scholar
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524. doi:10.1093/jxb/erg050
PubMed
CAS
Article
Google Scholar
Rooney DC, Clipson NJW (2009) Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil. Microb Ecol 57:4–13. doi:10.1007/s00248-008-9399-2
PubMed
Article
Google Scholar
Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358
PubMed
CAS
Article
Google Scholar
Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67
PubMed
Article
Google Scholar
Rudrappa T, Kirk J, Czymmek PW, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. doi:10.1104/pp.108.127613
PubMed
CAS
Article
Google Scholar
Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi:10.1073/pnas.0730845100
PubMed
CAS
Article
Google Scholar
Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918. doi:10.1111/j.1365-3040.2005.01471.x
PubMed
CAS
Article
Google Scholar
Schumann GL, D'Arcy CJ (2006) Essential plant pathology. The American Phytopathological Society, St. Paul
Google Scholar
Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96. doi:10.1111/j.1438-8677.2008.00162.x
PubMed
CAS
Article
Google Scholar
Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392
CAS
Article
Google Scholar
Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224
PubMed
CAS
Article
Google Scholar
Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393. doi:10.1016/j.tim.2004.06.008
PubMed
CAS
Article
Google Scholar
Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751
PubMed
CAS
Article
Google Scholar
Sonnemann I, Finkhaeuser K, Wolters V (2002) Does induced resistance in plants affect the belowground community? Appl Soil Ecol 21:179–185
Article
Google Scholar
Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506
PubMed
CAS
Article
Google Scholar
Sticher L, Mauch-Mani B, Métraux J-P (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270
PubMed
CAS
Article
Google Scholar
Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68
PubMed
CAS
Article
Google Scholar
Timms-Wilson TM, Kilshaw K, Bailey MJ (2004) Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops. Plant Soil 266:57–67
CAS
Article
Google Scholar
Ton J, Pieterse CMJ, Van Loon LC (1999) Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol Plant-Microb Interact 12:911–918
CAS
Article
Google Scholar
Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ (2001) The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652–661
PubMed
CAS
Article
Google Scholar
Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microb Interact 15:27–34
CAS
Article
Google Scholar
Ton J, Pieterse CMJ, Van Loon LC (2006) Multigenic and induced systemic resistance in plants. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 197–224
Chapter
Google Scholar
Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245
PubMed
CAS
Article
Google Scholar
Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787
PubMed
CAS
Google Scholar
Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742. doi:10.1111/j.1469-8137.2007.02138.x
PubMed
CAS
Article
Google Scholar
Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080. doi:10.1073_pnas.0605423104
PubMed
CAS
Article
Google Scholar
Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656
PubMed
CAS
Article
Google Scholar
Uren NC (2000) Types, amount, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40
Google Scholar
Van den Burg HA, Takken FLW (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294. doi:10.1016/j.tplants.2009.02.003
PubMed
Article
CAS
Google Scholar
Van der Ent S, Verhagen BWM, Van Doorn R, Bakke D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304. doi:10.1104/pp.107.113829
PubMed
Article
CAS
Google Scholar
Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytol 138:419–431. doi:10.1111/j.1469-8137.2009.02851.x
Google Scholar
Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607. doi:10.1073_pnas.0510213103
PubMed
Article
CAS
Google Scholar
Van Loon LC (1997) Induced resistance and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765
Article
Google Scholar
Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1
Article
CAS
Google Scholar
Van Loon LC, Bakker PAHM (2003) Signaling in rhizobacteria-plant interactions. In: De Krron H, Visser EJW (eds) Root ecology. Springer, Berlin, pp 297–330
Google Scholar
Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483
PubMed
Article
Google Scholar
Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi:10.1016/j.tplants.2006.02.005
PubMed
Article
CAS
Google Scholar
Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant-Microb Interact 21:919–930. doi:10.1094/MPMI-21-7-0919
Article
CAS
Google Scholar
Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734
Article
Google Scholar
Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van 't Westende YA, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microb Interact 10:716–724
Article
Google Scholar
Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549
PubMed
Article
Google Scholar
Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi:10.1016/j.pbi.2008.05.005
PubMed
Article
CAS
Google Scholar
Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat J-F (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17:93–97
PubMed
Article
Google Scholar
Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microb Interact 17:895–908
CAS
Article
Google Scholar
Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965
PubMed
CAS
Article
Google Scholar
Vicré M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008. doi:10.1104/pp.104.051813
PubMed
Article
CAS
Google Scholar
Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118. doi:10.1128/AEM.69.6.3110-3118.2003
PubMed
CAS
Article
Google Scholar
Viebahn M, Veenman C, Wernars K, Smit E, Van Loon LC, Bakker PAHM (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253. doi:10.1016/j.femsec.2004.12.014
PubMed
CAS
Article
Google Scholar
Viebahn M, Wernars K, Smit E, van Loon LC, DeSantis TZ, Andersen GL, Bakker PAHM (2006) Microbial diversity in wheat rhizosphere as affected by genetically modified Pseudomonas putida WCS358r. IOBC/WPRS Bull 29:167–172
Google Scholar
Vlot AC, Klessig DF, Park S-W (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442. doi:10.1016/j.pbi.2008.05.003
PubMed
CAS
Article
Google Scholar
Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554. doi:10.1021/jf021166h
PubMed
CAS
Article
Google Scholar
Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17. doi:10.1016/j.pmpp.2007.09.008
CAS
Article
Google Scholar
Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040. doi:10.1126/science.1108791
PubMed
CAS
Article
Google Scholar
Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:1042–1050. doi:10.1371/journal.ppat.0020123
CAS
Article
Google Scholar
Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Coletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512
Article
Google Scholar
Weller DM (1988) Biological control of soilborne plant-pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407
Article
Google Scholar
Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. doi:10.1094/PHYTO-97-2-0250
PubMed
Article
Google Scholar
Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. doi:10.1146/annurev.phyto.40.030402.110010
PubMed
CAS
Article
Google Scholar
Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511
PubMed
CAS
Google Scholar
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583
PubMed
CAS
Article
Google Scholar
Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004
PubMed
CAS
Article
Google Scholar
Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50
Article
Google Scholar
Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528
PubMed
CAS
Article
Google Scholar
Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030
PubMed
CAS
Article
Google Scholar
Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413. doi:10.1016/j.envint.2006.12.005
PubMed
Article
Google Scholar
Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16. doi:10.1016/j.coi.2007.11.003
PubMed
CAS
Article
Google Scholar
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767. doi:10.1038/nature02485
PubMed
CAS
Article
Google Scholar
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760. doi:10.1016/j.cell.2006.03.037
Google Scholar