Skip to main content

The Relationship Between Basal and Induced Resistance in Arabidopsis

  • Chapter
Multigenic and Induced Systemic Resistance in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audenaert, K., Pattery, T., Cornelis, P., and Höfte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact. 15:1147–1156.

    PubMed  CAS  Google Scholar 

  • Bakker, P.A.H.M., Van Peer, R., and Schippers, B. 1991. Suppression of soil-borne plant pathogens by fluorescent pseudomonads: mechanisms and prospects. In Biotic Interactions and Soil-Borne Diseases, eds. A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers, and A. Tempel, pp. 217–230. Amsterdam, The Netherlands: Elsevier Scientific Publishers.

    Google Scholar 

  • Bell, E., Creelman, R.A., and Mullet, J.E. 1995. A chloroplast lipoxygenase is required for wound-induced accumulation of jasmonic acid in Arabidopsis. Proc. Natl. Acad. Sci. USA 92:8675–8679.

    Article  PubMed  CAS  Google Scholar 

  • Bent, A.F., Innes, R.W., Ecker, J.R., and Staskawicz, B.J. 1992. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol. Plant Microbe Interact. 5:372–378.

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo, M., Molina, A., and Solano, R. 2002. ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Boller, T. 1991. Ethylene in pathogenesis and disease resistance. In The Plant Hormone Ethylene, eds. A.K. Mattoo, and J.C. Suttle, pp. 293–314. Boca Raton: CRC Press.

    Google Scholar 

  • Cameron, R.K., Paiva, N.C., Lamb, C.J., and Dixon, R.A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121–130.

    Article  CAS  Google Scholar 

  • Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Ciardi, J.A., Tieman, D.M., Lund, S.T., Jones, J.B., Stall, R.E., and Klee, H.J. 2000. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol. 123:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, J.D., Liu, Y., Klessig, D.F., and Dong, X. 1998. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10:557–569.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., and Gisi, U. 1994. Systemic translocation of 14C-DL-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 45:441–456.

    Article  CAS  Google Scholar 

  • Conrath, U., Pieterse, C.M.J., and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210–216.

    Article  PubMed  CAS  Google Scholar 

  • De Boer, M. 2000. Combining Pseudomonas strains to improve biological control of fusarium wilt in radish. Ph. D. thesis, Utrecht University, The Netherlands.

    Google Scholar 

  • De Meyer, G., Audenaert, K., and Höfte, M. 1999a. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation, but is not associated with PR-1a expression. Eur. J. Plant Pathol. 105:513–517.

    Article  Google Scholar 

  • De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J.-P., and Höfte, M. 1999b. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12:450–458.

    PubMed  Google Scholar 

  • De Meyer, G., and Höfte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593.

    PubMed  Google Scholar 

  • Delaney, T.P., Friedrich, L., and Ryals, J.A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92:6602–6606.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247–1250.

    Article  CAS  PubMed  Google Scholar 

  • Dempsey, D.A., Shah, J., and Klessig, D.F. 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18:547–575.

    Article  CAS  Google Scholar 

  • Després, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290.

    Article  PubMed  Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265–276.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Gut-Rella, M.G., Meier, B., Dincher, S., Staub, T., Métraux, J.-P., Kessmann, H., and Ryals, J. 1996. A benzothiadiazole derivate induces systemic resistance in tobacco. Plant J. 10:61–70.

    Article  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, J., Rogers, E.E., and Ausubel, F.M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982.

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez, L., and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003–1012.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, R. 1999. Induced disease resistance: how do induced plants stop pathogens? Physiol. Mol. Plant Pathol. 55:77–84.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R., and Kuć, J. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol. 17:61–71.

    Article  Google Scholar 

  • Hammerschmidt, R., Métraux, J.-P., and Van Loon, L.C. 2001. Inducing resistance: a summary of papers presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000. Eur. J. Plant Pathol. 107:1–6.

    Article  Google Scholar 

  • Hammond-Kosack, K.E., and Jones, J.D.G. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M., Hilper, A., Kaiser, W., and Linsenmair, K.E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645–654.

    Article  CAS  Google Scholar 

  • Iavicoli, A., Boutet, E., Buchala, A., and Métraux, J.P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 16:851–858.

    PubMed  CAS  Google Scholar 

  • Kachroo, P., Yoshioka, K., Shah, J., Dooner, K.D., and Klessig, D.F. 2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12:677–690.

    Article  PubMed  CAS  Google Scholar 

  • Katz, V.A., Thulke, O.U., and Conrath, U. 1998. A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol. 117:1333–1339.

    Article  PubMed  CAS  Google Scholar 

  • Kauss, H., Franke, R., Krause, K., Conrath, U., Jeblick, W., Grimmig, B., and Matern, U. 1993. Conditioning of parsley (Petroselium crispum) suspension cells increases elicitorinduced incorporation of cell wall phenolics. Plant Physiol. 102:459–466.

    PubMed  CAS  Google Scholar 

  • Kauss, H., Jeblick, W., Ziegler, J., and Krabler, W. 1994. Pretreatment of parsley (Petroselinum crispum) L. suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol. 105:89–104.

    PubMed  CAS  Google Scholar 

  • Kauss, H., Theisinger-Hinkel, E., Mindermann, R., and Conrath, U. 1992. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J. 2:655–660.

    CAS  Google Scholar 

  • Kessmann, H., Staub, T., Ligon, J., Oostendorp, M., and Ryals, J. 1994. Activation of systemic acquired disease resistance in plants. Eur. J. Plant Pathol. 100:359–369.

    Article  Google Scholar 

  • Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886.

    Article  CAS  Google Scholar 

  • Knoester, M., Linthorst, H.J.M., Bol, J.F., and Van Loon, L.C. 2001. Involvement of ethylene in lesion development and systemic acquired resistance in tobacco during the hypersensitive reaction to tobacco mosaic virus. Physiol. Mol. Plant Pathol. 59:45–57.

    Article  CAS  Google Scholar 

  • Knoester, M., Pieterse, C.M.J., Bol, J.F., and Van Loon, L.C. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant Microbe Interact. 12:720–727.

    PubMed  CAS  Google Scholar 

  • Knoester, M., Van Loon, L.C., Van den Heuvel, J., Hennig, J., Bol, J.F., and Linthorst, H.J.M. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95:1933–1937.

    Article  PubMed  CAS  Google Scholar 

  • Kovats, K., Binder, A., and Hohl, H.L. 1991. Cytology of induced systemic resistance of tomato to Colletotrichum lagenarium. Planta 183:484–490.

    Google Scholar 

  • Kuć, J. 1982. Induced immunity to plant disease. Bioscience 32:854–860.

    Article  Google Scholar 

  • Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant Microbe Interact. 8:863–870.

    PubMed  CAS  Google Scholar 

  • Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71–82.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, K.A., Potter, S.L., Uknes, S., and Ryals, J. 1994. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–588.

    Article  PubMed  CAS  Google Scholar 

  • Leeman, M., Van Pelt, J.A., Den Ouden, F.M., Heinsbroek, M., Bakker, P.A.H.M., and Schippers, B. 1995a. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027.

    CAS  Google Scholar 

  • Leeman, M., Van Pelt, J.A., Den Ouden, F.M., Heinsbroek, M., Bakker, P.A.H.M., and Schippers, B. 1995b. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101:655–664.

    Article  Google Scholar 

  • Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X. 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98:329–339.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Kloepper, J.W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:1064–1068.

    Google Scholar 

  • Lund, S.T., Stall, R.E., and Klee, H.J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, J.M., and Whipps, J.M. 1991. Substrate flow in the rhizosphere. In The Rhizosphere and Plant Growth, eds. D.L. Keister, and P.B. Cregan, pp. 15–24. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004.

    Article  CAS  PubMed  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer, M., Hase, C., Meuwly, P., Métraux, J.P., and Défago, G. 1994. Induction of systemic resistance to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and pyoverdine production. Phytopathology 84:139–146.

    CAS  Google Scholar 

  • Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S.D., and Défago, G. 1998. Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684.

    CAS  PubMed  Google Scholar 

  • McConn, J., Creelman, R.A., Bell, E., Mullet, J.E., and Browse, J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473–5477.

    Article  PubMed  CAS  Google Scholar 

  • Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006.

    Article  PubMed  Google Scholar 

  • Meyer, J.-M., Azelvandre, P., and Georges, C. 1992. Iron metabolism in Pseudomonas: Salicylic acid, a siderophore of Pseudomonas fluorescens CHA0. Biofactors 4:23–27.

    PubMed  CAS  Google Scholar 

  • Mur, L.A.J., Naylor, G., Warner, S.A.J., Sugars, F.M., White, R.F., and Draper, J. 1996. salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J. 9:559–571.

    Article  CAS  Google Scholar 

  • Nawrath, C., and Métraux, J.P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404.

    Article  PubMed  CAS  Google Scholar 

  • Norman-Setterblad, C., Vidal, S., and Palva, T.E. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe Interact. 13:430–438.

    PubMed  CAS  Google Scholar 

  • Pallas, J.A., Paiva, N.L., Lamb, C., and Dixon, R.S. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10:281–293.

    Article  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Pelt, J.A., Ton, J., Parchmann, S., Mueller, M.J., Buchala, A.J., Métraux, J.P., and Van Loon, L.C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57:123–134.

    Article  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Wees, S.C.M., Ton, J., Van Pelt, J.A., and Van Loon, L.C. 2002. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 4:535–544.

    Article  CAS  Google Scholar 

  • Pieterse, C.M.J., VanWees, S.C.M., Hoffland, E., Van Pelt, J.A., and Van Loon, L.C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Wees, S.C.M., Van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and Van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580.

    Article  PubMed  CAS  Google Scholar 

  • Press, C.M., Wilson, M., Tuzun, S., and Kloepper, J.W. 1997. Salicylic acid produced by Serratia marcescens 91–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant Microbe Interact. 10:761–768.

    CAS  Google Scholar 

  • Rogers, E.E., and Ausubel, F.M. 1997. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. Plant Cell 9:305–316.

    Article  PubMed  CAS  Google Scholar 

  • Ross, A.F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P., and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB. Plant Cell 9:425–439.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1808–1819.

    Article  Google Scholar 

  • Ryu, C.M., Hu, C.H., Reddy, M.S., and Kloepper, J.W. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160:413–420.

    Article  CAS  Google Scholar 

  • Schippers, B., Bakker, A.W., and Bakker, P.A.H.M. 1987. Interactions of deleterious and beneficial rhizosphere micoorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 115:339–358.

    Article  Google Scholar 

  • Shah, J., Tsui, F., and Klessig, D.F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe Interact. 10:69–78.

    PubMed  CAS  Google Scholar 

  • Shulaev, V., Leon, J., and Raskin, I. 1995. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7:1691–1701.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Becker, J., Marois, E., Huguet, E.J., Midland, S.L., Sims, J., and Keen, N.T. 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol. 116:231–238.

    Article  PubMed  CAS  Google Scholar 

  • Staswick, P.E., Yuen, G.Y., and Lehman, C.C. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15:747–754.

    Article  PubMed  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., and Métraux, J.-P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235–270.

    Article  PubMed  CAS  Google Scholar 

  • Stout, M.J., Fidantsef, A.L., Duffey, S.S., and Bostock, R.M. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:115–130.

    Article  CAS  Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Broekaert, W.F., and Cammue, B.P.A. 2000. Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol. Biochem. 38:421–427.

    Article  CAS  Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107–15111.

    Article  CAS  PubMed  Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Tierens, K.F.M., and Broekaert, W.F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Thulke, O.U., and Conrath, U. 1998. Salicylic acid has a dual role in the activation of defense-related genes in parsley. Plant J. 14:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., Davison, S., Van Wees, S.C.M., Van Loon, L.C., and Pieterse, C.M.J. 2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125:652–661.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., De Vos, M., Robben, C., Buchala, A.J., Métraux, J.P., Van Loon, L.C., and Pieterse, C.M.J. 2002a. Characterisation of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., Pieterse, C.M.J., and Van Loon, L.C. 1999. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact. 12:911–918.

    PubMed  CAS  Google Scholar 

  • Ton, J., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2002b. The Arabidopsis ISR1 locus is required for rhizobacteria-mediated induced systemic resistance against different pathogens. Plant Biol. 4:224–227.

    Article  CAS  Google Scholar 

  • Ton, J., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2002c. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15:27–34.

    PubMed  CAS  Google Scholar 

  • Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E., and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645–656.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L.C. 1997. Induced resistance and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103:753–765.

    Article  Google Scholar 

  • Van Loon, L.C., and Antoniw, J.F. 1982. Comparison of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Neth. J. Plant Pathol. 88:237–256.

    Article  Google Scholar 

  • Van Loon, L.C., Bakker, P.A.H.M., and Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.

    Article  PubMed  Google Scholar 

  • Van Peer, R. 1990. Microbial interactions and plant responses in soilless cultures—root colonization by pseudomonads: mechanisms, plant responses and effects on fusarium wilt. Ph. D. thesis, Utrecht University, The Netherlands.

    Google Scholar 

  • Van Peer, R., Niemann, G.J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91:728–734.

    Google Scholar 

  • Van Peer, R., and Schippers, B. 1992. Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth. J. Plant Pathol. 98:129–139.

    Article  Google Scholar 

  • Van Wees, S.C.M. 1999. Rhizobacteria-mediated induced systemic resistance in Arabidopsis: signal transduction and expression. Ph. D. thesis, Utrecht University, The Netherlands.

    Google Scholar 

  • Van Wees, S.C.M., De Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711–8716.

    Article  PubMed  Google Scholar 

  • Van Wees, S.C.M., Luijendijk, M., Smoorenburg, I., Van Loon, L.C., and Pieterse, C.M.J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537–549.

    Article  PubMed  Google Scholar 

  • Van Wees, S.C.M., Pieterse, C.M.J., Trijssenaar, A., Van’ t Westende, Y.A.M., Hartog, F., and Van Loon, L.C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 10:716–724.

    PubMed  Google Scholar 

  • Verberne, M.C., Hoekstra, J., Bol, J.F., and Linthorst, H.J.M. 2003. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J. 35:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965.

    Article  PubMed  CAS  Google Scholar 

  • Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J., and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95:7209–7214.

    Article  PubMed  CAS  Google Scholar 

  • Visca, P., Ciervo, A., Sanfilippo, V., and Orsi, N. 1993. Iron-regulated salicylate synthesis by Pseudomonas spp. J. Gen. Microbiol. 139:1995–2001.

    PubMed  CAS  Google Scholar 

  • Volko, S.M., Boller, T., and Ausubel, F.M. 1998. Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. Genetics 149:537–548.

    PubMed  CAS  Google Scholar 

  • Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Métraux, J.P., and Ryals, J.A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Wei, G., Kloepper, J.W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81:1508–1512.

    Google Scholar 

  • Wei, G., Kloepper, J.W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224.

    Google Scholar 

  • Whalen, M.C., Innes, R.W., Bent, A.F., and Staskawicz, B.J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59.

    Article  PubMed  CAS  Google Scholar 

  • White, R.F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412.

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z., Reddy, M.S., Ryu, C.M., McInroy, J.A., Wilson, M., and Kloepper, J.W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96:6523–6528.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D.F. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact. 13:191–202.

    PubMed  CAS  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.-P., and Mauch-Mani, B. 2000. Potentiation of pathogenspecific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920–12925.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ton, J., Pieterse, C.M.J., Van Loon, L.C. (2006). The Relationship Between Basal and Induced Resistance in Arabidopsis . In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_9

Download citation

Publish with us

Policies and ethics