Skip to main content

Advertisement

Log in

2G-biofuel ethanol: an overview of crucial operations, advances and limitations

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

From year to year, mankind is struggling with an increasing climate crisis. Constant climate change is related to human activities. The global dependence on non-renewable fossil fuels to meet our current energy needs cannot be sustained longer in the face of depleting fuel reserves. Particular attention should be paid to biofuels produced from lignocellulosic biomass, which is a waste product from the forestry, paper and agricultural industries, or a product derived from energy crops, intended for biofuel purposes. A problem that arises when using lignocellulosic biomass is the limited availability of fermentable sugars due to its complicated structure. For this reason, various methods of pretreatment of the raw material are used. The aim of the pretreatment is to increase the availability of cellulose for hydrolytic enzymes and to separate the main fractions of the lignocellulosic material, mainly the lignin molecule. After pretreatment and hydrolysis, the monomeric sugars are further processed into ethanol through the fermentation process. The last stages in biotechnological lignocellulose conversion are the distillation and dehydration process to obtain pure biofuel. This work is a review of the literature on second-generation biofuels produced from lignocellulosic biomass. Issues ranging from various types of raw materials, methods of its pretreatment, enzymatic hydrolysis, fermentation with the participation of various microorganisms, to various methods of dehydration of the obtained bioethanol were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data is present in the manuscript itself.

Code availability

Not applicable.

References

  1. Karimi S, Karri RR, Tavakkoli Yaraki M, Koduru JR (2021) Processes and separation technologies for the production of fuel-grade bioethanol: a review. Environ Chem Lett 19:2873–2890. https://doi.org/10.1007/s10311-021-01208-9

    Article  Google Scholar 

  2. Awoyale AA, Lokhat D (2021) Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci Rep 11:557. https://doi.org/10.1038/s41598-020-78105-8

    Article  Google Scholar 

  3. Lamichhane G, Acharya A, Poudel DK, Aryal B, Gyawali N, Niraula P, Phuyal SR, Budhathoki P, Bk G, Parajuli N (2021) Recent advances in bioethanol production from lignocellulosic biomass. Int J Green Energy 18(7):731–744. https://doi.org/10.1080/15435075.2021.1880910

    Article  Google Scholar 

  4. Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  5. Yamashita Y, Sasaki Ch, Nakamura Y (2010) Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods. J Biosci Bioeng 110(1):79–86. https://doi.org/10.1016/j.jbiosc.2009.12.009

    Article  Google Scholar 

  6. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  Google Scholar 

  7. Sarkar N, Gosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  Google Scholar 

  8. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  9. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energ Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  10. Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol Conserv 141:2450–2460. https://doi.org/10.1016/j.biocon.2008.08.005

    Article  Google Scholar 

  11. Rzelewska-Piekut M, Regel-Rosocka M (2020) Technology of large volume alcohols, carboxylic acids and esters. Phys Sci Rev 20190034.https://doi.org/10.1515/9783110656367-004

  12. Pulyaeva VN, Kharitonova NA, Kharitonova EN (2020) Advantages and disadvantages of the production and using of liquid biofuels. 2020 IOP Conf Ser: Mater Sci Eng 976:012031

  13. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549. https://doi.org/10.1016/j.renene.2011.04.031

    Article  Google Scholar 

  14. Cotana F, Cavalaglio G, Gelosia M, Nicolini A, Coccia V, Petrozzi A (2014) Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia 45:42–51. https://doi.org/10.1016/j.egypro.2014.01.006

    Article  Google Scholar 

  15. Das N, Jena PK, Padhi D, Mohanty MK, Sahoo G (2021) A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01294-3

    Article  Google Scholar 

  16. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295. https://doi.org/10.1016/j.biortech.2007.11.013

    Article  Google Scholar 

  17. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  18. Mussato SI, Fernandes M, Milagres AMF, Roberto I (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43(2):124–129. https://doi.org/10.1016/j.enzmictec.2007.11.006

    Article  Google Scholar 

  19. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energ Combust 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  20. Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523. https://doi.org/10.1016/j.biortech.2008.09.035

    Article  Google Scholar 

  21. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  22. Cardona Alzate CA, Sánchez Toro OJ (2006) Energy consumption analysis of integrated flow sheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2447–2459. https://doi.org/10.1016/j.energy.2005.10.020

    Article  Google Scholar 

  23. Roy R, Rahman MS, Raynie DE (2020) Recent advances of greener pretreatment technologies of lignocellulose. Curr Res Green Sustain Chem 3:100035. https://doi.org/10.1016/j.crgsc.2020.100035

    Article  Google Scholar 

  24. Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae H-J (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228. https://doi.org/10.1186/s13068-015-0419-4

    Article  Google Scholar 

  25. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patelf AK, Pant D, Banu JR, Raoc CV, Kim Y-G, Yang Y-H (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  Google Scholar 

  26. Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energ 113:97–105. https://doi.org/10.1016/j.apenergy.2013.07.015

    Article  Google Scholar 

  27. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  Google Scholar 

  28. Zhang K, Lu X, Li Y, Jiang X, Liu L, Wang H (2019) New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl Microbiol Biotechnol 103(5):2087–2099. https://doi.org/10.1007/s00253-019-09620-6

    Article  Google Scholar 

  29. Jagtap SS, Rao CV (2018) Production of d-arabitol from d-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Appl Microbiol Biotechnol 102:143–151. https://doi.org/10.1007/s00253-017-8581-1

    Article  Google Scholar 

  30. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomassderived ethanol—a review. Biofuel Res J 3:347–356. https://doi.org/10.18331/BRJ2016.3.1.4

  31. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  32. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173. https://doi.org/10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  33. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  34. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057

    Article  Google Scholar 

  35. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  36. Alvira P, Tomás-Pejó E, Bellesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  37. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy 3(1):25–31. https://doi.org/10.1166/jbmb.2009.1002

    Article  Google Scholar 

  38. Zhu Z, Macquarrie DJ, Simister R, Gomez LD, McQueen-Mason SJ (2015) Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes. Sustain Chem Process 3:15. https://doi.org/10.1186/s40508-015-0041-6

    Article  Google Scholar 

  39. Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenerg 108:48–54. https://doi.org/10.1016/j.biombioe.2017.10.039

    Article  Google Scholar 

  40. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962. https://doi.org/10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  41. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Techno 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007

    Article  Google Scholar 

  42. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937. https://doi.org/10.3390/molecules23112937

    Article  Google Scholar 

  43. Verardi A, Blasi A, De Bari I, Calabrò V (2016) Steam pretreatment of Saccharum Officinarum L. bagasse by adding of impregnating agents for advanced Bioethanol production. Ecotoxicol Environ Saf 134:293–300. https://doi.org/10.1016/j.ecoenv.2015.07.034

    Article  Google Scholar 

  44. Qin L, Liu ZH, Li BZ, Dale BE, Yuan YJ (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. https://doi.org/10.1016/j.biortech.2012.02.134

    Article  Google Scholar 

  45. da Costa SL, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347. https://doi.org/10.1016/j.copbio.2009.05.003

    Article  Google Scholar 

  46. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079

    Article  Google Scholar 

  47. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  48. Nitsos C, Rova U, Christakopoulos P (2018) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 11:50. https://doi.org/10.3390/en11010050

    Article  Google Scholar 

  49. Lewandowska M, Szymańska K, Kordala N, Dąbrowska A, Bednarski W, Juszczuk A (2016) Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method. Bioresour Technol 212:262–270. https://doi.org/10.1016/j.biortech.2016.04.063

    Article  Google Scholar 

  50. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases—diversity & biotechnology with reference to mangrowe environment: a review. J Genet Eng Biotechnol 15:197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

    Article  Google Scholar 

  51. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  52. Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegradation 75:176–180. https://doi.org/10.1016/j.ibiod.2012.05.042

    Article  Google Scholar 

  53. Liang YS, Yuan XZ, Zeng GM, Hu CL, Zhong H, Huang DL, Tang L, Zhao JJ (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21:615–624. https://doi.org/10.1007/s10532-010-9329-0

    Article  Google Scholar 

  54. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  55. Brandon SK, Eiteman MA, Patel K, Richbourg MM, Miller DJ, Anderson WF, Peterson JD (2008) Hydrolysis of Tifton 85 bermudagrass in a pressurizea batch hot water reactor. J Chem Technol Biot 83(4):505–512. https://doi.org/10.1002/jctb.1824

    Article  Google Scholar 

  56. Zhang N, Xu H, Yang J, Xie J-C, Wei M, Zhao J, Jiang JC (2020) Effects of liquid hot water combined with 1, 4-butanediol on chemical composition and structure of Moso Bamboo. Appl Biochem Biotechnol 190(4):1177–1186. https://doi.org/10.1007/s12010-019-03173-0

    Article  Google Scholar 

  57. Maurya DP, Vats S, Rai S, Negi S (2013) Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J Exp Biol 51(11):992–996

    Google Scholar 

  58. Merino-Pérez O, Martínez-Palou R, Labidi J, Luque R (2015) Microwave-assisted pretreatment of lignocellulosic biomass to produce biofuels and value-added products. In: Fang Z, Smith Jr, Richard L, Qi X (eds) Production of biofuels and chemicals with microwave. Biofuels Biorefin 3:197–224. https://doi.org/10.1007/978-94-017-9612-5_10

  59. Puligundla P, Oh S-E, Mok C (2016) Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett 17:1–10. https://doi.org/10.5714/CL.2016.17.1.001

    Article  Google Scholar 

  60. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106. https://doi.org/10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  61. Parthiba O, Karthikeyan E, Trably S, Mehariya N, Bernet JWC, Carrere WH (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol 249:1025–1039. https://doi.org/10.1016/j.biortech.2017.09.105

    Article  Google Scholar 

  62. Van der Pol E, Bakker R, van Zeeland A, Garcia DS, Punt A, Eggink G (2015) Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment. Bioresour Technol 181:114–123. https://doi.org/10.1016/j.biortech.2015.01.033

    Article  Google Scholar 

  63. Kootstra A, Maarten J, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131. https://doi.org/10.1016/j.bej.2009.04.020

    Article  Google Scholar 

  64. Woo-Seok L, Jae-Won L (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311. https://doi.org/10.1016/j.biortech.2013.04.103

    Article  Google Scholar 

  65. McIntoch S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727. https://doi.org/10.1016/j.biortech.2010.03.116

    Article  Google Scholar 

  66. Cardona E, Rios J, Peña J, Rios L (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47. https://doi.org/10.1016/j.fuel.2013.10.055

    Article  Google Scholar 

  67. Bi S, Peng L, Chen K, Zhu Z (2016) Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. Bioresour Technol 214:692–699. https://doi.org/10.1016/j.biortech.2016.05.041

    Article  Google Scholar 

  68. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Cur Opin Green Sustain Chem 5:5–11. https://doi.org/10.1016/j.cogsc.2017.03.003

    Article  Google Scholar 

  69. Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. https://doi.org/10.1016/j.biortech.2015.09.078

    Article  Google Scholar 

  70. Park J, Shin H, Yoo S, Zoppe JO, Park S (2015) Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. BioRes 10(2):2732–2743. https://doi.org/10.15376/biores.10.2.2732-2743

  71. Gunny AAN, Arbain D, Nashef EM, Jamal P (2015) Applicability evaluation of deep eutectic solvents–cellulase system for lignocellulose hydrolysis. Bioresour Technol 181:297–302. https://doi.org/10.1016/j.biortech.2015.01.057

    Article  Google Scholar 

  72. Meng X, Parikh A, Seemala B, Kumar R, Pu Y, Christopher P, Wyman CE, Cai CM, Ragauskas AJ (2018) Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sust Chem Eng 6:8711–8718. https://doi.org/10.1021/acssuschemeng.8b01028

    Article  Google Scholar 

  73. Patinvoh RJ, Osadolor OA, Chandolias K, Sárvári Horváth I, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24. https://doi.org/10.1016/j.biortech.2016.11.083

    Article  Google Scholar 

  74. Fockink DH, Morais AR, Ramos LP, Łukasik RM (2018) Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars. Energy 151:536–544. https://doi.org/10.1016/j.energy.2018.03.085

    Article  Google Scholar 

  75. Zhao MJ, Xu QQ, Li GM, Zhang QZ, Zhou D, Yin JZ, Zhan HS (2019) Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem 31:39–45. https://doi.org/10.1016/j.jechem.2018.05.003

    Article  Google Scholar 

  76. Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L (2020) Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Front Bioeng Biotechnol 8:252. https://doi.org/10.3389/fbioe.2020.00252

    Article  Google Scholar 

  77. Liang J, Chen X, Wang L, Wei X, Wang H, Lu S, Li Y (2017) Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresour Technol 228:147–155. https://doi.org/10.1016/j.biortech.2016.12.080

    Article  Google Scholar 

  78. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7–17. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  79. Prado JM, Lachos-Perez D, Forster-Carneiro T, Rostagno MA (2016) Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: a review. Food Bioprod Process 98:95–123. https://doi.org/10.1016/j.fbp.2015.11.004

    Article  Google Scholar 

  80. Morais ARC, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27. https://doi.org/10.5714/CL.2016.17.1.001

    Article  Google Scholar 

  81. Weerachanchai P, Lee JM (2017) Recovery of lignin and ionic liquid by using organic solvents. J Ind Eng Chem 49:122–132. https://doi.org/10.1016/J.JIEC.2017.01.018

    Article  Google Scholar 

  82. Marin-Batista JD, Mohedano AF, de la Rubia A (2021) Pretreatment of lignocellulosic biomass with 1-ethyl-3-methylimidazolium acetate for its eventual valorization by anaerobic digestion. Resources 10:118. https://doi.org/10.3390/resources10120118

    Article  Google Scholar 

  83. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489–2499. https://doi.org/10.1039/c1gc15374a

    Article  Google Scholar 

  84. Singh S (2018) Designing tailored microbial and enzymatic response in ionic liquids for lignocellulosic biorefineries. Biophys Rev 10:911–913. https://doi.org/10.1007/s12551-018-0418-3

    Article  Google Scholar 

  85. Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG, Simmons BA, Singh S (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Nat Acad Sci 111:E3587–E3595. https://doi.org/10.1073/pnas.1405685111

    Article  Google Scholar 

  86. Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920. https://doi.org/10.1039/C5GC01035G

    Article  Google Scholar 

  87. Sun J, Shi J, Murthy Konda NVSN, Campos D, Liu D, Nemser S, Shamshina J, Dutta T, Berton P, Gurau G, Rogers RD, Simmons BA, Singh S (2017) Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol Biofuels 10:154. https://doi.org/10.1186/s13068-017-0842-9

    Article  Google Scholar 

  88. Moyer P, Kim K, Abdoulmoumine N, Chmely SC, Long BK, Carrier DJ, Labbé N (2018) Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions. Biotechnol Biofuels 11:265. https://doi.org/10.1186/s13068-018-1263-0

    Article  Google Scholar 

  89. Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100:9451–9467. https://doi.org/10.1007/s00253-016-7884-y

    Article  Google Scholar 

  90. Zhao ZM, Meng X, Scheidemantle B, Pu Y, Liu ZH, Li BZ, Wyman CE, Cai CM, Ragauskas AJ (2022) Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. Bioresour Technol 347:126367. https://doi.org/10.1016/j.biortech.2021.126367

    Article  Google Scholar 

  91. Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Chemsuschem 8(10):1716–1725. https://doi.org/10.1002/cssc.201403045

    Article  Google Scholar 

  92. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv 35(2):105–134. https://doi.org/10.1016/j.biotechadv.2016.11.006

    Article  Google Scholar 

  93. Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36(8):2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009

    Article  Google Scholar 

  94. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res Int 23:9265–9275. https://doi.org/10.1007/s11356-015-4780-4

    Article  Google Scholar 

  95. Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259. https://doi.org/10.1016/j.biortech.2011.02.075

    Article  Google Scholar 

  96. Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Takahashi SN, K, (2015) Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour Technol 176:169–174. https://doi.org/10.1016/j.biortech.2014.11.038

    Article  Google Scholar 

  97. Li D, Tan Y, Zhou Y, Pathak S, Sendjaja AY, Abdul Majid M, Chowdhury P, Ng WJ (2015) Comparative study of low-energy ultrasonic and alkaline treatment on biosludge from secondary industrial wastewater treatment. Environ Technol 36:2239–2248. https://doi.org/10.1080/09593330.2015.1025103

    Article  Google Scholar 

  98. Ramadoss G, Muthukumar K (2014) Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochem Eng J 83:33–41. https://doi.org/10.1016/j.bej.2013.11.013

    Article  Google Scholar 

  99. Parveen H, Tewari L, Pradhan D, Chaudhary P (2021) Combined pretreatment as an effective technology in breaking of phenolic polymer lignin from sustainable biomass: Bambusa balcooa. Preprints 2:2021050656. https://doi.org/10.20944/preprints202105.0656.v1

    Article  Google Scholar 

  100. Dimos K, Paschos T, Louloudi A, Kalogiannis KG, Lappas AA, Papayannakos N, Kekos D, Mamma D (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5(1):5. https://doi.org/10.3390/fermentation5010005

    Article  Google Scholar 

  101. Kordala N, Lewandowska M, Bednarski W (2021) Effect of the method for the elimination of inhibitors present in Miscanthus giganteus hydrolysates on ethanol production effectiveness. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-01255-2

    Article  Google Scholar 

  102. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Biosynergy Wageningen UR Food & Biobased Research

  103. Zhou Z, Liu D, Zhao X (2021) Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sustain Energy Rev 146:111169. https://doi.org/10.1016/j.rser.2021.111169

    Article  Google Scholar 

  104. El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871. https://doi.org/10.1016/j.carbpol.2010.12.022

    Article  Google Scholar 

  105. Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang S-T (ed) Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Wiley, pp 131–146

    Chapter  Google Scholar 

  106. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Tech 46:541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010

    Article  Google Scholar 

  107. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  108. Dawood A, Ma K (2020) Applications of microbial β-mannanases. Front Bioeng Biotechnol 8:598630. https://doi.org/10.3389/fbioe.2020.598630

    Article  Google Scholar 

  109. Palonen H (2004) Role of lignin in the enzymatic hydrolysis of lignocelluloses. VTT Publications, Espoo, pp 22–24

    Google Scholar 

  110. Juturu V, Wu JCh (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    Article  Google Scholar 

  111. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425. https://doi.org/10.1016/j.tibtech.2011.04.004

    Article  Google Scholar 

  112. Ren H, Richard TL, Moore KJ (2007) The impact of enzyme characteristics on corn stover fiber degradation and acid production during ensiled storage. Appl Biochem Biotechnol 137–140(1–12):221–238. https://doi.org/10.1007/s12010-007-9054-2

    Article  Google Scholar 

  113. Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sust Energ Rev 82:2379–2386. https://doi.org/10.1016/j.rser.2017.08.074

    Article  Google Scholar 

  114. Quiroz-Castañeda RE, Folch-Mallol JL (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel A (ed) Sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization. IntechOpen, pp 119–155

  115. Baig KS (2020) Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors. Bioresour Bioprocess 7:21. https://doi.org/10.1186/s40643-020-00310-0

    Article  Google Scholar 

  116. Abdul Fattah SS, Mohamed R, Jahim JM, Illias RM, Abu Bakar FD, Murad AMA (2016) Commercial cellulases and hemicellulase performance towards oil palm empty fruit bunch (OPEFB) hydrolysis. AIP Conf Proc 1784:020002. https://doi.org/10.1063/1.4966712

    Article  Google Scholar 

  117. Zhang Y, Yang J, Luo L, Wang E, Wang R, Liu L, Liu J, Yuan H (2020) Low-cost cellulase-hemicellulase mixture secreted by Trichoderma harzianum EM0925 with complete saccharification efficacy of lignocellulose. Int J Mol Sci 21:371–389. https://doi.org/10.3390/ijms21020371

    Article  Google Scholar 

  118. http://www.genencor.com/fileadmin/user_upload/genencor/documents/TRIO_ProductSheet_LowRes.pdf. Accessed 12 Sept 2021

  119. https://www.novozymes.com/-/media/Project/Novozymes/Website/website/advance-your-business/05_L2_Bioenergy/Benefit-sheets/Cellic-CTec3-HS-application-sheet-NA.pdf. Accessed 12 Sept 2021

  120. https://biosolutions.novozymes.com/en/bioenergy/products/biomass-conversion/cellic-ctec3-hs. Accessed 12 Sept 2021

  121. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    Article  Google Scholar 

  122. Lee I, Yu JH (2020) The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel 275:117943. https://doi.org/10.1016/j.fuel.2020.117943

    Article  Google Scholar 

  123. Saekhow B, Chookamlang S, Na-u-dom A, Leksawasdi N, Sanguanchaipaiwong V (2020) Enzymatic hydrolysis of cassava stems for butanol production of isolated Clostridium sp. Energy Rep 6(1):196–201. https://doi.org/10.1016/j.egyr.2019.08.042

    Article  Google Scholar 

  124. Martins MP, Ventorim RZ, Coura RR, Maitan-Alfenas GP, Alfenas RF, Guimaraes VM (2018) The β-xylosidase from Ceratocystis fimbriata RM35 improves the saccharification of sugarcane bagasse. Biocatal Agric Biotechnol 13:291–298. https://doi.org/10.1016/j.bcab.2018.01.009

    Article  Google Scholar 

  125. García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (eds) Applied Biochemistry and Biotecnology. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-181-331

  126. Chen H, Wang L (2016) Technologies for biochemical conversion of biomass. 1st edition, ISBN: 9780128025949

  127. Karnaouri A, Choroian K, Zouraris D, Karantonis A, Topakas E, Rova U, Christakopoulos P (2022) Lytic polysaccharide monooxygenases as powerful tools in enzymatically assisted preparation of nano-scaled cellulose from lignocellulose: a review. Bioresour Technol 345:126491. https://doi.org/10.1016/j.biortech.2021.126491

    Article  Google Scholar 

  128. Ladevèze S, Haon M, Villares A, Cathala B, Grisel S, Herpoël-Gimbert I (2017) The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. Biotechnol Biofuels 10:215. https://doi.org/10.1186/s13068-017-0903-0

    Article  Google Scholar 

  129. Bernardi AV, Gerolamo LE, de Gouvêa PF, Yonamine DK, Pereira LMS, de Oliveira AHC (2020) LPMO AfAA9_B and cellobiohydrolase AfCel6A from A. fumigatus boost enzymatic saccharification activity of cellulase cocktail. Int J Mol Sci 22(1):276. https://doi.org/10.3390/ijms22010276

    Article  Google Scholar 

  130. Liu G, Qu Y (2021) Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Eng Micriobiol 1:100005. https://doi.org/10.1016/j.engmic.2021.100005

    Article  Google Scholar 

  131. Song B, Li BY, Wang XY, Shen W, Park SJ, Collings C, Feng AR, Smith SJ, Walton JD, Ding SY (2018) Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol Biofuels 11:41. https://doi.org/10.1186/s13068-018-1023-1

    Article  Google Scholar 

  132. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttila M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282. https://doi.org/10.1126/science.1208386

    Article  Google Scholar 

  133. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080

    Article  Google Scholar 

  134. Karimi K, Zamani A (2013) Mucor indicus: Biology and industrial application perspectives: a review. Biotechnol Adv 31:466–481. https://doi.org/10.1016/j.biotechadv.2013.01.009

    Article  Google Scholar 

  135. Karimi K, Brandberg T, Edebo L, Taherzadeh MJ (2005) Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production. Biotechnol Lett 27:1395–1400. https://doi.org/10.1007/s10529-005-0688-2

    Article  Google Scholar 

  136. Sues A, Millati R, Edebo L, Taherzadeh MJ (2005) Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. FEMS Yeast Res 5:669–676. https://doi.org/10.1016/j.femsyr.2004.10.013

    Article  Google Scholar 

  137. Millati R, Wikandari R, Trihandayani ET, Cahyanto MN, Taherzadeh MJ, Niklasson C (2011) Ethanol from oil palm empty fruit bunch via dilute-acid hydrolysis and fermentation by Mucor indicus and Saccharomyces cerevisiae. Agric J 6(2):54–59. https://doi.org/10.3923/aj.2011.54.59

    Article  Google Scholar 

  138. Asachi R, Karimi K (2013) Enhanced ethanol and chitosan production from wheat straw by Mucor indicus with minimal nutrient consumption. Process Biochem 48:1524–1531. https://doi.org/10.1016/j.procbio.2013.07.013

    Article  Google Scholar 

  139. Zhao L, Zhang X, Tan T (2008) Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenerg 32:1156–1161. https://doi.org/10.1016/j.biombioe.2008.02.011

    Article  Google Scholar 

  140. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  Google Scholar 

  141. Lee TY, Kim MD, Kim KY, Park K, Ryu YW, Seo JH (2000) A parametric study on ethanol production from xylose by Pichia stipitis. Biotechnol Bioprocess Eng 5:27–31. https://doi.org/10.1007/BF02932349

    Article  Google Scholar 

  142. Converti A, Perego P, Dominguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb Tech 28:339–345. https://doi.org/10.1016/s0141-0229(00)00330-6

    Article  Google Scholar 

  143. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524. https://doi.org/10.1007/s10529-008-9728-z

    Article  Google Scholar 

  144. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. https://doi.org/10.1007/s00253-003-1444-y

    Article  Google Scholar 

  145. Li X, Kim TH, Nghiem NP (2010) Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresour Technol 101(15):5910–5916. https://doi.org/10.1016/j.biortech.2010.03.015

    Article  Google Scholar 

  146. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang Y-HP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev 15:4950–4962. https://doi.org/10.1016/j.rser.2011.07.058

    Article  Google Scholar 

  147. Moysés DN, Reis VCB, Almeida JRM, Moraes LMP, Torres FAG (2016) Xylose Fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):1–18. https://doi.org/10.3390/ijms17030207

    Article  Google Scholar 

  148. Qureshi N, Dien BS, Saha BC, Iten L, Liu S, Hughes SR (2015) Genetically engineered Escherichia coli FBR5 to use cellulosic sugars: production of ethanol from corn fiber hydrolysate employing commercial nutrient medium. Eur Chem Bull 4(3):130–134. https://doi.org/10.1002/btpr.1584

    Article  Google Scholar 

  149. Abo BO, Gao M, Wang Y, Chuanfu W, Hongzhi M, Wang Q (2019) Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34(1):57–68. https://doi.org/10.1515/reveh-2018-0054

    Article  Google Scholar 

  150. Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(7):1–14. https://doi.org/10.1186/1754-6834-1-7

    Article  Google Scholar 

  151. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92. https://doi.org/10.1016/j.ejbt.2016.02.007

    Article  Google Scholar 

  152. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33:1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002

    Article  Google Scholar 

  153. Hans M, Kumar S, Chandel AK, Polikarpov I (2019) A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochem 85:125–134. https://doi.org/10.1016/j.procbio.2019.06.019

    Article  Google Scholar 

  154. Yasuda M, Nagai H, Takeo K, Ishii Y, Ohta K (2014) Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napier grass (Pennisetum Purpureum Schumach). Springerplus 3(1):333. https://doi.org/10.1186/2193-1801-3-333

    Article  Google Scholar 

  155. Qin L, Zhao X, Wen-Chao L, Zhu JQ, Liu L, Bing-Zhi L, Yuan YJ (2018) Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels 11(1):118. https://doi.org/10.1186/s13068-018-1118-8

    Article  Google Scholar 

  156. McIntosh S, Zhang Z, Palmer J, Wong HH, Doherty WOS, Vancov T (2016) Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin 10(4):346–358. https://doi.org/10.1002/bbb.1651

    Article  Google Scholar 

  157. Robak K, Balcerek M (2018) Review of second-generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):2. https://doi.org/10.17113/ftb.56.02.18.5428

  158. Tokin R, Ipsen JØ, Westh P, Johansen KS (2020) The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent. Biotechnol Lett 42:1975–1984. https://doi.org/10.1007/s10529-020-02922-0

    Article  Google Scholar 

  159. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS, Krogh KBRM, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108:15079–15084

    Article  Google Scholar 

  160. Ishola MM, Jahandideh A, Haidarian B, Brandberg T, Taherzadeh MJ (2013) Simultaneous saccharification, filtration and fermentation (SSFF): a novel method for bioethanol production from lignocellulosic biomass. Bioresour Technol 133:68–73. https://doi.org/10.1016/j.biortech.2013.01.130

    Article  Google Scholar 

  161. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294. https://doi.org/10.1016/j.procbio.2012.05.004

    Article  Google Scholar 

  162. Olguin-Maciel E, Singh A, Chable-Villacis R, Tapia-Tussell R, Ruiz HA (2020) Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: an overview. Agronomy 10:1834. https://doi.org/10.3390/agronomy10111834

    Article  Google Scholar 

  163. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371. https://doi.org/10.1016/j.copbio.2009.05.006

    Article  Google Scholar 

  164. Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15–26. https://doi.org/10.1016/j.biortech.2015.11.023

    Article  Google Scholar 

  165. Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964. https://doi.org/10.1016/j.biortech.2009.11.010

    Article  Google Scholar 

  166. Kim TH, Choi CH, Oh KK (2013) Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation. Bioresour Technol 130:306–313. https://doi.org/10.1016/j.biortech.2012.11.125

    Article  Google Scholar 

  167. Pruksathorn P, Vitidsant T (2009) Production of pure ethanol from azeotropic solution by pressure swing adsorption. Am J Eng Appl Sci 2(1):1–7. https://doi.org/10.1007/s11814-009-0184-9

    Article  Google Scholar 

  168. Makertihartha IGBN, Dharmawijaya P, Wenten IG (2017) Recent advances on bioethanol dehydration using zeolite membrane. J Phys Conf Ser 877:012074. https://doi.org/10.1088/1742-6596/877/1/012074

    Article  Google Scholar 

  169. Jeong J-S, Jeon H, Ko K-M, Chung B, Choi G-W (2012) Production of anhydrous ethanol using various PSA (pressure swing adsorption) processes in pilot plant. Renew Energy 42:41–45. https://doi.org/10.1016/j.renene.2011.09.027

    Article  Google Scholar 

  170. Kupiec K, Rakoczy J, Komorowicz T, Larwa B (2014) Heat and mass transfer in adsorption-desorption cyclic process for ethanol dehydration. Chem Eng J 241:485–494. https://doi.org/10.1016/j.cej.2013.10.043

    Article  Google Scholar 

  171. Rumbo-Morales JY, López-López G, Alvarado-Martínez VM, Sorcia-Vázquez FJ, Brizuela-Mendoza JA, Martínez-García M (2020) Parametric study and control of a pressure swing adsorption process to separate the water–ethanol mixture under disturbances. Sep Purif Technol 236:116214. https://doi.org/10.1016/j.seppur.2019.116214

    Article  Google Scholar 

  172. Kupiec K, Kubala A (2006) Dehydration of ethanol used as a fuel additive. Environ Prot Eng 32(1):151–159

    Google Scholar 

  173. Rakoczy J, Kupiec K, Błąk A, Larwa T (2008) Dehydration of distillery spirit to obtain fuel bioethanol. Tech J Chem 1:115–124 (in polish)

    Google Scholar 

  174. Tajallipour M, Niu C, Dalai A (2013) Ethanol dehydration in a pressure swing adsorption process using canola meal. Energy Fuels 27(11):6655–6664. https://doi.org/10.1021/ef400897e

    Article  Google Scholar 

  175. Yan B, Niu CH (2017) Pre-treating biosorbents for purification of bioethanol from aqueous solution. Int J Green Energy 14(3):245–252. https://doi.org/10.1080/15435075.2016.1254087

    Article  Google Scholar 

  176. Tgarguifa A, Abderafi S, Bounahmidi T (2018) Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew Energy 122:239–250. https://doi.org/10.1016/j.renene.2018.01.112

    Article  Google Scholar 

  177. Amornraksa S, Subsaipin I, Simasatitkul L, Assabumrungrat S (2020) Systematic design of separation process for bioethanol production from corn stover. BMC Chem Eng 2:10. https://doi.org/10.1186/s42480-020-00033-1

    Article  Google Scholar 

  178. Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS (2021) Conversion of lignocellulose for bioethanol production, applied in bio-polyethylene terephthalate. Polymers 13:2886. https://doi.org/10.3390/polym13172886

    Article  Google Scholar 

  179. Afonso C, Crespo J, Anastas P (2015) Green separation processes: fundamentals and applications, 1st edn. Wiley, Weinheim

    Google Scholar 

  180. Peng P, Lan Y, Liang L, Jia K (2021) Membranes for bioethanol production by pervaporation. Biotechnol Biofuels 14:10. https://doi.org/10.1186/s13068-020-01857-y

    Article  Google Scholar 

  181. Wee SH, Tye CT, Bhatia S (2008) Membrane separation process—pervaporation through zeolite membrane. Sep Purif Technol 63:500–516. https://doi.org/10.1016/j.seppur.2008.07.010

    Article  Google Scholar 

  182. Conde-Mejía C, Jiménez-Gutiérrez A (2020) Analysis of ethanol dehydration using membrane separation processes. Open Life Sci 15:122–132. https://doi.org/10.1515/biol-2020-0013

    Article  Google Scholar 

  183. Samei M, Mohammadi T, Asadi AA (2013) Tubular composite PVA ceramic supported membrane for bio-ethanol production. Chem Eng Res Des 91:2703–2712. https://doi.org/10.1016/j.cherd.2013.03.008

    Article  Google Scholar 

  184. Gao C, Zhang M, Ding J, Pan F, Jiang Z, Li Y, Zhao J (2014) Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes. Carbohydr Polym 99:158–165. https://doi.org/10.1016/j.carbpol.2013.08.057

    Article  Google Scholar 

  185. Meireles IT, Brazinha C, Crespo JG, Coelhoso IM (2013) A new microbial polysaccharide membrane for ethanol dehydration by pervaporation. J Membr Sci 425–426:227–234. https://doi.org/10.1016/j.memsci.2012.09.002

    Article  Google Scholar 

  186. Raiser T (2012) Turning waste into energy. Sulzer Tech Rev 3:4–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea for the article. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natalia Kordala.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors give their consent for publication upon acceptance of the article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordala, N., Walter, M., Brzozowski, B. et al. 2G-biofuel ethanol: an overview of crucial operations, advances and limitations. Biomass Conv. Bioref. 14, 2983–3006 (2024). https://doi.org/10.1007/s13399-022-02861-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02861-y

Keywords

Navigation