Skip to main content

Advertisement

Log in

A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

With the draining of petroleum derivatives, expanding natural contamination issues, there has been rising enthusiasm for the examination of lignocellulosic biomass for an alternative fsource of energy. Characterization of various biomass, its intermediate, and products is a need for conversion of any biomass to biofuels. Chemical composition of lignocellulosic biomass is an essential point for developing potent pretreatment technologies to break its rigid structure, conversion of sugar by different enzymes mainly cellulose to glucose and even various microorganisms which can ferment sugars into bioethanol and other value-added green chemicals. In this present review work, the main focus is on the proximate and ultimate analysis of different feedstocks, and altered pretreatment techniques such as physical, chemical, physicochemical, and biological methods for bioethanol production have been addressed, which ultimately will help in overcoming the recalcitrance of lignocellulosic biomass by degrading the lignin fraction, breaking down of lignocellulose components, hydrolysis, and fermentation process. Recently, combined pretreatment is gaining popularity as it is more favorable and profitable for improving chemical yield and process of enzymatic hydrolysis of LBs, but it increases the cost of operation. Acid pretreatment, steam explosion, and hydrothermal processes all together show a comparatively high effect on degrading hemicelluloses fraction. Alkali, oxidative, and organosolv pretreatment are more efficient in removing and degrading of lignin portion. This present study will empower a better idea and knowledge of the available process with the upcoming advanced processes which would help to overcome the limitations and establish technology to facilitate the pretreatment methods to make an authentic concept of biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kang Q, Appels L, Baeyens J, Dewil R, Tan T (2014) Energy-efficient production of cassava-based bio-ethanol. Advances in Bioscience and Biotechnology 5(12):925. https://doi.org/10.4236/abb.2014.512107

    Article  Google Scholar 

  2. Bioethanol production: insight into past, present and future perspectives Shreyas Niphadkar, Praful Bagade and Shadab Ahmed. biofuels 2017

  3. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  4. Lei J, Bi Y, Shen L (2011, 2011) Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions. Biomed Res Int:1–10. https://doi.org/10.1155/2011/417421

  5. Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multisite genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wallbound ferulic acid in alfalfa (Medicagosativa L.). Plant J 48(1):113–124. https://doi.org/10.1111/j.1365-313X.2006.02857.x

    Article  Google Scholar 

  6. Kang Q, Huybrechts J, Van der Bruggen B, Baeyens J, Tan T, Dewil R (2014) Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropicmixture. Separationand purification Technology 136:144–149. https://doi.org/10.1016/j.seppur.2014.09.009

    Article  Google Scholar 

  7. Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27. https://doi.org/10.1016/S0360-1285(99)00005-2

    Article  Google Scholar 

  8. Bååth H, Gällerspång A, Hallsby G, Lundström A, Löfgren P, Nilsson M, Ståhl G (2002) Remote sensing, field survey, and long-term forecasting: an efficient combination for local assessments of forest fuels. Biomass Bioenergy 22(3):145–157. https://doi.org/10.1016/S0961-9534(01)00065-4

    Article  Google Scholar 

  9. Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass and bioenergy 20(3):151–159. https://doi.org/10.1016/S0961-9534(00)00074-X

    Article  Google Scholar 

  10. Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manag 50(7):1746–1760. https://doi.org/10.1016/j.enconman.2009.03.013

    Article  Google Scholar 

  11. Vertes AA, Qureshi N, Yukawa H, Blaschek HP (2011) Biomass to biofuels: strategies for global industries. Wiley

  12. Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants WH freedman and company worth publishers 347-368

  13. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of radiation research and applied sciences 7(2):163–173

    Article  Google Scholar 

  14. Singh H, Sapra PK, Sidhu BS (2013) Evaluation and characterization of different biomass residues through proximate & ultimate analysis and heating value. Asian Journal of Engineering and Applied Technology 2(2):6–10

    Google Scholar 

  15. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annual review of plant biology 61(1): 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315

  16. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  17. Brandão PC, Souza TC, Ferreira CA, Hori CE, Romanielo LL (2010) Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J Hazard Mater 175(1–3):1106–1112. https://doi.org/10.1016/j.jhazmat.2009.10.060

    Article  Google Scholar 

  18. Adekiigbe A (2012) Determination of heating value of five economic trees residue as a fuel for biomass heating system. Nature and science 10(10):26–29

    Google Scholar 

  19. Shen J, Zhu S, Liu X, Zhang H, Tan J (2010) The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 51(5):983–987. https://doi.org/10.1016/j.enconman.2009.11.039

    Article  Google Scholar 

  20. Raj T, Kapoor M, Gaur R, Christopher J, Lamba B, Tuli DK, Kumar R (2015) Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy & Fuels 29(5):3111–3118. https://doi.org/10.1021/ef5027373

    Article  Google Scholar 

  21. Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856. https://doi.org/10.1016/j.fuel.2007.05.041

    Article  Google Scholar 

  22. Kumar S, Paritosh K, Pareek N, Chawade A, Vivekanand V (2018) De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview. Renewable and Sustainable Energy Reviews 90:160–170. https://doi.org/10.1016/j.rser.2018.03.049

    Article  Google Scholar 

  23. Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis 78(2):265–271. https://doi.org/10.1016/j.jaap.2006.08.002

    Article  Google Scholar 

  24. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933. https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  25. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  26. Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76(1–2):230–237. https://doi.org/10.1016/j.jaap.2005.11.007

    Article  Google Scholar 

  27. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  Google Scholar 

  28. Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol 101(11):3808–3815. https://doi.org/10.1016/j.biortech.2010.01.021

    Article  Google Scholar 

  29. Zhang H, Zhang P, Ye J, Wu Y, Liu J, Fang W, Zeng G (2018) Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresource technology 247:147–156. https://doi.org/10.1016/j.biortech.2017.09.065

    Article  Google Scholar 

  30. Liu H, Zhang Y, Hou T, Chen X, Gao C, Han L, Xiao W (2018) Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel Processing Technology 174:53–60. https://doi.org/10.1016/j.fuproc.2018.02.011

    Article  Google Scholar 

  31. Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54. https://doi.org/10.1016/j.biombioe.2017.10.039

    Article  Google Scholar 

  32. Savoo S, Mudhoo A (2018) Biomethanationmacrodynamics of vegetable residues pretreated by low-frequency microwave irradiation. Bioresour Technol 248:280–286. https://doi.org/10.1016/j.biortech.2017.05.200

    Article  Google Scholar 

  33. Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9(2):85–93. https://doi.org/10.1016/S1350-4177(01)00106-7

    Article  Google Scholar 

  34. Montalbo-Lomboy M, Johnson L, Khanal SK, van Leeuwen JH, Grewell D (2010) Sonication of sugary-2 corn: a potential pretreatment to enhance sugar release. Bioresour Technol 101(1):351–358. https://doi.org/10.1016/j.biortech.2009.07.075

    Article  Google Scholar 

  35. Fan LT, Gharpuray MM, Lee YH (1987) Enzymatic hydrolysis. In: Cellulose hydrolysis. Springer, Berlin, Heidelberg, pp 21–119

    Chapter  Google Scholar 

  36. Mafei TD, Neto FS, Peixoto G, de Baptista NÁ, Monti R, Masarin F (2020) Extraction and characterization of hemicellulose from Eucalyptus by-product: assessment of enzymatic hydrolysis to produce Xylooligosaccharides. Applied Biochemistry and Biotechnology 190(1):197–217. https://doi.org/10.1007/s12010-019-03076-0

    Article  Google Scholar 

  37. Ferraz A, Baeza J, Rodriguez J, Freer J (2000) Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresour Technol 74(3):201–212. https://doi.org/10.1016/S0960-8524(00)00024-9

    Article  Google Scholar 

  38. Masarin F, Gurpilhares DB, Baffa DC, Barbosa MH, Carvalho W, Ferraz A, Milagres AM (2011) Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for biofuels 4(1):55. https://doi.org/10.1186/1754-6834-4-55

    Article  Google Scholar 

  39. Mendes FM, Siqueira G, Carvalho W, Ferraz A, Milagres AM (2011) Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnol Prog 27(2):395–401. https://doi.org/10.1002/btpr.553

    Article  Google Scholar 

  40. Kuchelmeister C, Bauer S (2015) Rapid small-scale determination of extractives in biomass. BioEnergy Research 8(1):68–76. https://doi.org/10.1007/s12155-014-9493-x

    Article  Google Scholar 

  41. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  42. Anderson S (2004) Soxtec. In: Soxtec: its principles and applications. Critical Issues and Competitive Studies, Oil Extraction and Analysis

    Chapter  Google Scholar 

  43. Sitholé BB, Vollstaedt P, Allen LH (1991) Comparison of Soxtec and Soxhlet systems for determining extractives content. TAPPI J 74(11):187–191

    Google Scholar 

  44. Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99(13):5694–5702. https://doi.org/10.1016/j.biortech.2007.10.055

    Article  Google Scholar 

  45. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  46. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing 4(1):7

  47. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057

    Article  Google Scholar 

  48. Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose I. Journal of South China University Technology 28(1):84–89

    Google Scholar 

  49. Azuma J, Tanaka F, Koshijima T (1984) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62(4):377–384

    Google Scholar 

  50. Ooshima H, Aso K, Harano Y, Yamamoto TJBL (1984) Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6(5):289–294

    Article  Google Scholar 

  51. Intanakul P, Krairiksh M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of wood chemistry and technology 23(2):217–225. https://doi.org/10.1081/WCT-120021926

    Article  Google Scholar 

  52. Zhu S, Wu Y, Yu Z, Wang C, Yu F, Jin S, Zhang Y (2006) Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst Eng 93(3):279–283. https://doi.org/10.1016/j.biosystemseng.2005.11.013

    Article  Google Scholar 

  53. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy 3(1):25–31. https://doi.org/10.1166/jbmb.2009.1002

    Article  Google Scholar 

  54. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  55. Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442. https://doi.org/10.1002/app.1979.070230513

    Article  Google Scholar 

  56. Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101(13):4907–4913. https://doi.org/10.1016/j.biortech.2009.10.009

    Article  Google Scholar 

  57. Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry 40(9):3082–3086. https://doi.org/10.1016/j.procbio.2005.03.016

    Article  Google Scholar 

  58. Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucorindicus and Rhizopusoryzae from rice straw by separate hydrolysis and fermentation. Biomass and bioenergy 33(5):828–833. https://doi.org/10.1016/j.biombioe.2009.01.003

    Article  Google Scholar 

  59. Park JY, Shiroma R, Al-Haq MI, Zhang Y, Ike M, Arai-Sanoh Y, Tokuyasu K (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw–calcium capturing by carbonation (CaCCO) process. Bioresour Technol 101(17):805–6811. https://doi.org/10.1016/j.biortech.2010.03.098

    Article  Google Scholar 

  60. Amiri H, Karimi K, Zilouei H (2014) Organosolvpretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456. https://doi.org/10.1016/j.biortech.2013.11.038

    Article  Google Scholar 

  61. Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101(19):7432–7438. https://doi.org/10.1016/j.biortech.2010.04.053

    Article  Google Scholar 

  62. Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT (2010) Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem 45(8):1299–1306. https://doi.org/10.1016/j.procbio.2010.04.017

    Article  Google Scholar 

  63. Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargava VK (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichiakudriavzevii HOP-1. J Ind Microbiol Biotechnol 39(4):557–566

    Article  Google Scholar 

  64. Singh A, Bishnoi NR (2012) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101. https://doi.org/10.1016/j.biortech.2011.12.084

    Article  Google Scholar 

  65. Bak JS (2014) Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass. Biotechnology Reports 4 3:0–33. https://doi.org/10.1016/j.btre.2014.07.006, 30

  66. Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosystems engineering 107(2):67–73. https://doi.org/10.1016/j.biosystemseng.2010.05.012

    Article  Google Scholar 

  67. Yu H, Xiao W, Han L, Huang G (2019) Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour Technol 282:69–74. https://doi.org/10.1016/j.biortech.2019.02.104

    Article  Google Scholar 

  68. De Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. Journal of Analytical and Applied Pyrolysis 93:95–103. https://doi.org/10.1016/j.jaap.2011.10.002

    Article  Google Scholar 

  69. Wen JL, Sun SL, Xue BL, Sun RC (2013) Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachyspubescens). Holzforschung 67(6):613–627. https://doi.org/10.1515/hf-2012-0162

    Article  Google Scholar 

  70. Wildschut J, Smit AT, Reith JH, Huijgen WJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource technology 135:58–66. https://doi.org/10.1016/j.biortech.2012.10.050

    Article  Google Scholar 

  71. Shimizu K, Usami K (1978) Enzymatic hydrolysis of wood. III Pretreatment of woods with acidic methanol–water mixture MOkuzaigakkaishi 24(9):632–637

    Google Scholar 

  72. Oliet M, Garcıa J, Rodrıguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol–water pulping: comparative study between ethanol and methanol as delignifying agents. Chemical Engineering Journal 87(2):157–162. https://doi.org/10.1016/S1385-8947(01)00213-3

    Article  Google Scholar 

  73. Gáspár M, Kálmán G, Réczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42(7):1135–1139. https://doi.org/10.1016/j.procbio.2007.04.003

    Article  Google Scholar 

  74. Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32(12):1130–1135. https://doi.org/10.1016/j.biombioe.2008.02.006

    Article  Google Scholar 

  75. Tarkow H, FEIST WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. https://doi.org/10.1021/ba-1969-0095.ch012

  76. SumphanwanichJ LN, Srinorakutara T, Akaracharanya A (2008) Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 58(2):219–225

    Article  Google Scholar 

  77. Zhao X, Cheng K, Liu D (2009) Organosolvpretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  Google Scholar 

  78. Park N, Kim HY, Koo BW, Yeo H, Choi IG (2010) Organosolvpretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinusrigida). Bioresour Technol 101(18):7046–7053. https://doi.org/10.1016/j.biortech.2010.04.020

    Article  Google Scholar 

  79. Kokorin A (2011) Ionic liquids: applications and perspectives. BoD–Books on Demand

  80. Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133(1):41–57

    Article  Google Scholar 

  81. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245. https://doi.org/10.1002/bit.23108

    Article  Google Scholar 

  82. Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559. https://doi.org/10.1039/B417745B

    Article  Google Scholar 

  83. Alriols MG, Tejado A, Blanco MA, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chemical Engineering Journal 148(1):106–114. https://doi.org/10.1016/j.cej.2008.08.008

    Article  Google Scholar 

  84. Ichwan M, Son TW (2011) Study on organosolv pulping methods of oil palm biomass. In: International seminar on chemistry, pp 364–370

    Google Scholar 

  85. Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer Singapore, Singapore, p 87

    Book  Google Scholar 

  86. Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36(8):2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009

    Article  Google Scholar 

  87. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082. https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  88. Sarmad S, Xie Y, Mikkola JP, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO 2 sorbents: from solubility to viscosity. New J Chem 41(1):290–301. https://doi.org/10.1039/C6NJ03140D

    Article  Google Scholar 

  89. Pandey A, Dhingra D, Pandey S (2017) Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents. J Phys Chem B 121(16):4202–4212. https://doi.org/10.1021/acs.jpcb.7b01724

    Article  Google Scholar 

  90. Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8):1250–1260. https://doi.org/10.1002/cctc.201500134

    Article  Google Scholar 

  91. Li W, Zheng P, Guo J, Ji J, Zhang M, Zhang Z, Abbas G (2014) Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate. Bioresour Technol 154:44–50. https://doi.org/10.1016/j.biortech.2013.11.097

    Article  Google Scholar 

  92. Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Greenchemistry 12(10):1739–1746. https://doi.org/10.1039/B927424C

    Article  Google Scholar 

  93. Kamireddy SR, Li J, Tucker M, Degenstein J, Ji Y (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res 52(5):1775–1782. https://doi.org/10.1021/ie3019609

    Article  Google Scholar 

  94. Kang KE, Park DH, Jeong GT (2013) Effects of NH4Cl and MgCl2 on pretreatment and xylan hydrolysis of miscanthus straw. Carbohydrate polymers 92(2):1321–1326. https://doi.org/10.1016/j.carbpol.2012.10.019

  95. Sun Y, Lu X, Zhang S, Zhang R, Wang X (2011) Kinetic study for Fe (NO3) 3 catalyzed hemicellulose hydrolysis of different corn stover silages. Bioresour Technol 102(3):2936–2942. https://doi.org/10.1016/j.biortech.2010.11.076

    Article  Google Scholar 

  96. Verardi A, Blasi A, Marino T, Molino A, Calabrò V (2018) Effect of steam-pretreatment combined with hydrogen peroxide on lignocellulosic agricultural wastes for bioethanol production: analysis of derived sugars and other by-products. Journal of energy chemistry 27(2):535–543. https://doi.org/10.1016/j.jechem.2017.11.007

    Article  Google Scholar 

  97. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. In: Applied biochemistry and biotechnology. Humana press, pp 81–92

  98. Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology (no. Sirsi) i9780071487498. McGraw-Hill, New York

    Google Scholar 

  99. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  100. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  Google Scholar 

  101. Varga E, Schmidt AS, Réczey K, Thomsen AB (2003) Pretreatment of corn Stover using wet oxidation to enhance enzymatic digestibility. Appl Biochem Biotechnol 104(1):37–50

    Article  Google Scholar 

  102. Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2):139–144. https://doi.org/10.1016/S0960-8524(00)00147-4

    Article  Google Scholar 

  103. Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17(8):845–850

    Article  Google Scholar 

  104. Nakamura Y, Daidai M, Kobayashi F (2004) Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced. Water Sci Technol 50(3):167–172. https://doi.org/10.2166/wst.2004.0188

    Article  Google Scholar 

  105. Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme and microbial technology 30(4):445–453. https://doi.org/10.1016/S0141-0229(02)00011-X

    Article  Google Scholar 

  106. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  107. Lucas M, Hanson SK, Wagner GL, Kimball DB, Rector KD (2012) Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresource technology 119:174–180. https://doi.org/10.1016/j.biortech.2012.05.086

    Article  Google Scholar 

  108. Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration& Biodegradation 75:176–180. https://doi.org/10.1016/j.ibiod.2012.05.042

    Article  Google Scholar 

  109. Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promoting effect of byproducts from Irpexlacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnology for biofuels 4(1):37

    Article  Google Scholar 

  110. Cianchetta S, Di Maggio B, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173(2):609–623

    Google Scholar 

  111. Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl Biochem Biotechnol 175(8):3709–3728

    Article  Google Scholar 

  112. CastoldiR BA, de Morais GR, Baesso ML, RCG C, Peralta RA, Peralta RM (2014) Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chemical Engineering Journal 258:240–246. https://doi.org/10.1016/j.cej.2014.07.090

    Article  Google Scholar 

  113. Potumarthi R, Baadhe RR, Nayak P, Jetty A (2013) Simultaneous pretreatment and sacchariffication of rice husk by Phanerochetechrysosporium for improved production of reducing sugars. Bioresource technology 128:113–117. https://doi.org/10.1016/j.biortech.2012.10.030

    Article  Google Scholar 

  114. Song L, Yu H, Ma F, Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. BioResources 8(3):3802–3816

    Article  Google Scholar 

  115. Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource technology 102(16):7507–7512. https://doi.org/10.1016/j.biortech.2011.05.026

    Article  MathSciNet  Google Scholar 

  116. Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresource technology 179:50–57. https://doi.org/10.1016/j.biortech.2014.11.059

    Article  Google Scholar 

  117. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotusostreatus for enzymatic hydrolysis of rice straw. Journal of bioscience and bioengineering 100(6):637–643. https://doi.org/10.1263/jbb.100.637

    Article  Google Scholar 

  118. Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renewable and Sustainable Energy Reviews 54:217–234. https://doi.org/10.1016/j.rser.2015.10.003

    Article  Google Scholar 

  119. Dutra ED, Santos FA, Alencar BRA, Reis ALS, de Souza RDFR, da Silva Aquino KA et al (2018) Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery 8(1):225–234

    Article  Google Scholar 

  120. Akhtar N, Goyal D, Goyal A (2017) Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Convers Manag 141:133–144. https://doi.org/10.1016/j.enconman.2016.06.081

    Article  Google Scholar 

  121. Molaverdi M, Karimi K, Mirmohamadsadeghi S, Galbe M (2019) High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucorindicus at low enzyme loading. Energy Convers Manag 182:520–529. https://doi.org/10.1016/j.enconman.2018.12.078

    Article  Google Scholar 

  122. Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 268:355–362. https://doi.org/10.1016/j.biortech.2018.08.009

    Article  Google Scholar 

  123. Yuan Z, Li G, Hegg EL (2018) Enhancement of sugar recovery and ethanol production from wheat straw through alkaline pre-extraction followed by steam pretreatment. Bioresour Technol 266:194–202. https://doi.org/10.1016/j.biortech.2018.06.065

    Article  Google Scholar 

  124. Yuan Z, Wen Y, Li G (2018) Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresour Technol 259:228–236. https://doi.org/10.1016/j.biortech.2018.03.044

    Article  Google Scholar 

  125. Yuan W, Gong Z, Wang G, Zhou W, Liu Y, Wang X, Zhao M (2018) Alkaline organosolvpretreatment of corn stover for enhancing the enzymatic digestibility. Bioresource technology 265:464–470. https://doi.org/10.1016/j.biortech.2018.06.038

    Article  Google Scholar 

  126. Vergara P, Ladero M, García-Ochoa F, Villar JC (2018) Pre-treatment of corn stover, Cynaracardunculus L. stems and wheat straw by ethanol-water and diluted sulfuric acid: comparison under different energy input conditions. Bioresource technology 270:449–456. https://doi.org/10.1016/j.biortech.2018.09.058

    Article  Google Scholar 

  127. Hilares RT, Kamoei DV, Ahmed MA, da Silva SS, Han JI, dos Santos JC (2018) A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. Ultrasonicssonochemistry 43:219–226. https://doi.org/10.1016/j.ultsonch.2018.01.016

    Article  Google Scholar 

  128. Wang Z, Dien BS, Rausch KD, Tumbleson ME, Singh V (2018) Fermentation of undetoxified sugarcane bagasse hydrolyzates using a two stage hydrothermal and mechanical refining pretreatment. Bioresour Technol 261:313–321. https://doi.org/10.1016/j.biortech.2018.04.018

    Article  Google Scholar 

  129. BondJQ UAA, Olcay H, Tompsett GA, Jae J, Xing R, Foster A (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7(4):1500–1523

    Article  Google Scholar 

  130. de Beeck BO, Dusselier M, Geboers J, Holsbeek J, Morré E, Oswald S, Sels BF (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8(1):230–240

    Article  Google Scholar 

  131. Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89(1):2–10. https://doi.org/10.1002/jctb.4168

    Article  Google Scholar 

  132. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C 6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16(2):548–572. https://doi.org/10.1039/C3GC41365A

    Article  Google Scholar 

  133. Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews 40:608–620. https://doi.org/10.1016/j.rser.2014.07.209

    Article  Google Scholar 

  134. Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chem 18(4):937–943. https://doi.org/10.1039/C5GC02489G

    Article  Google Scholar 

  135. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 18(2):342–359. https://doi.org/10.1039/C5GC01771H

    Article  Google Scholar 

  136. Hassanin AH, Hamouda T, Candan Z, Kilic A, Akbulut T (2016) Developing high-performance hybrid green composites. Compos Part B 92:384–394. https://doi.org/10.1016/j.compositesb.2016.02.051

    Article  Google Scholar 

  137. Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9(6):562–582. https://doi.org/10.1002/cssc.201501405

    Article  Google Scholar 

  138. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos IK, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43(8):2587–2627. https://doi.org/10.1039/C3CS60293A

    Article  Google Scholar 

  139. Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv 4(48):25310–25318. https://doi.org/10.1039/C4RA04747H

    Article  Google Scholar 

  140. Li SH, Liu S, Colmenares JC, Xu YJ (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chemistry 18(3):594–607. https://doi.org/10.1039/C5GC02109J

    Article  Google Scholar 

  141. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  142. Joelsson E, Erdei B, Galbe M, Wallberg O (2016) Techno-economic evaluation of integrated first-and second-generation ethanol production from grain and straw. Biotechnology for biofuels 9(1):1

    Article  Google Scholar 

  143. Zhang Y, Fu X, Chen H (2012) Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-optimization of fermentation of corn straw hydrolysates. Bioresour Technol 121:100–104. https://doi.org/10.1016/j.biortech.2012.07.006

    Article  Google Scholar 

  144. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

    Article  Google Scholar 

  145. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079

    Article  Google Scholar 

  146. Taherzadeh MJ, Niklasson C (2004) Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. https://doi.org/10.1021/bk-2004-0889.ch003

  147. Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. International sugar journal 106(1263):147–150

    Google Scholar 

  148. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sust Energ Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

  149. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. https://doi.org/10.1016/j.biortech.2015.08.051

    Article  Google Scholar 

  150. Ji G, Gao C, Xiao W, Han L (2016) Mechanical fragmentation of corncob at different plant scales: impact and mechanism on microstructure features and enzymatic hydrolysis. Bioresource technology 205:159–165. https://doi.org/10.1016/j.biortech.2016.01.029

    Article  Google Scholar 

  151. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  152. García A, Alriols MG, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110. https://doi.org/10.1016/j.indcrop.2013.12.019

    Article  Google Scholar 

  153. de Carvalho DM, Sevastyanova O, Penna LS, da Silva BP, Lindström ME, Colodette JL (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid and alkaline pretreatments. Ind Crop Prod 73:118–126. https://doi.org/10.1016/j.indcrop.2015.04.021

    Article  Google Scholar 

  154. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Current opinion in biotechnology 27:150–158. https://doi.org/10.1016/j.copbio.2014.01.014

    Article  Google Scholar 

  155. Jagmann N, Philipp B (2014) Design of synthetic microbial communities for biotechnological production processes. Journal of biotechnology 184:209–218. https://doi.org/10.1016/j.jbiotec.2014.05.019

    Article  Google Scholar 

  156. Ji-Lu Z (2007) Bio-oil from fast pyrolysis of rice husk: yields and related properties and improvement of the pyrolysis system. J Anal Appl Pyrolysis 80(1):30–35. https://doi.org/10.1016/j.jaap.2006.12.030

  157. Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis 82(2):191–198. https://doi.org/10.1016/j.jaap.2008.03.003

  158. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renewable energy 37(1):19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  Google Scholar 

  159. Chandel AK, Gonçalves BC, Strap JL, da Silva SS (2015) Biodelignification of lignocellulose substrates: an intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol 35(3):281–293. https://doi.org/10.3109/07388551.2013.841638

    Article  Google Scholar 

  160. Balat M (2009) Production of hydrogen via biological processes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31(20):1802–1812.10.1080/15567030802463109

    Article  Google Scholar 

  161. Putro JN, Soetaredjo FE, Lin SY, Ju YH, Ismadji S (2016) Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 6(52):46834–46852. https://doi.org/10.1039/C6RA09851G

    Article  Google Scholar 

  162. Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, Bélafi-Bakó K (2016) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrog Energy 41(6):3820–3836. https://doi.org/10.1016/j.ijhydene.2015.12.081

    Article  Google Scholar 

  163. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  164. Delidovich I, Hausoul PJ, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chemical reviews 116(3):1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

    Article  Google Scholar 

  165. Romero A, Alonso E, Sastre Á, Nieto-Márquez A (2016) Conversion of biomass into sorbitol: cellulose hydrolysis on MCM-48 and d-glucose hydrogenation on Ru/MCM-48. Microporous and Mesoporous Materials 224:1–8. https://doi.org/10.1016/j.micromeso.2015.11.013

    Article  Google Scholar 

  166. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239. https://doi.org/10.1016/j.ymben.2014.12.007

    Article  Google Scholar 

  167. Kang S, Li X, Fan J, Chang J (2013) Hydrothermal conversion of lignin: a review. Renew Sust Energ Rev 27:546–558. https://doi.org/10.1016/j.rser.2013.07.013

    Article  Google Scholar 

  168. Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8(1):24–51. https://doi.org/10.1002/cssc.201402503

    Article  Google Scholar 

  169. Gellerstedt G, Li J, Eide I, Kleinert M, Barth T (2008) Chemical structures present in biofuel obtained from lignin. Energy Fuel 22(6):4240–4244. https://doi.org/10.1021/ef800402f

    Article  Google Scholar 

  170. Yoshikawa T, Yagi T, Shinohara S, Fukunaga T, Nakasaka Y, TagoT MT (2013) Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Process Technol 108:69–75. https://doi.org/10.1016/j.fuproc.2012.05.003

    Article  Google Scholar 

  171. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem Eur J 17(21):5939–5948. https://doi.org/10.1002/chem.201002438

    Article  Google Scholar 

  172. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  Google Scholar 

  173. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 6(5):880–889. https://doi.org/10.1002/cssc.201200990

    Article  Google Scholar 

  174. Yang J, Christiansen K, Luchner S (2013) Renewable, low-cost carbon fiber for light weight vehicles. Detroit, US Department of Energy

    Google Scholar 

Download references

Funding

The authors acknowledge the funding provided by the BPCL OUAT Biofuel project implemented in OUAT, Bhubaneswar, for providing financial support in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed towards the conceptions design, interpretation of data, drafting, revising, and approval of the manuscript.

Corresponding author

Correspondence to Pradip Kumar Jena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Jena, P.K., Padhi, D. et al. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conv. Bioref. 13, 1503–1527 (2023). https://doi.org/10.1007/s13399-021-01294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01294-3

Keywords

Navigation