Skip to main content

Advertisement

Log in

Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Rising crude oil prices and environmental concerns have renewed interest in renewable energy. Cellulosic ethanol promises to deliver a renewable fuel from non-food feedstocks. One technical challenge producing cellulosic ethanol economically is a robust organism to utilize the different sugars present in cellulosic biomass. Unlike starch where glucose is the only sugar present, cellulosic biomass has other sugars such as xylose and arabinose, usually called C5 sugars. This review examines the most promising naturally occurring C5 fermenting organism, Pichia stipitis. In this work, the properties that make P. stipitis unique from other organisms, its physiology and fermentation results on lignocellulosic substrates have been reviewed. P. stipitis can produce 41 g ethanol/l with a potential to cleanup some of the most concentrated toxins. These results coupled with the less stringent nutritional requirements, great resistance to contamination and its thick cell walls makes P. stipitis a viable organism for scale-up. However, P. stipitis has a slower sugar consumption rate compared to Saccharomyces cerevisiae and requires microaerophilic condition for ethanol production. Finally, future studies to enhance fermentation capabilities of this yeast have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agbogbo FK, Wenger KS (2006) Effect of pretreatment chemicals on xylose fermentation by P. stipitis. Biotechnol Lett 28(24):2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Agbogbo FK, Wenger KS (2007) Production of ethanol from corn stover hemicellulose hydrolyzate using P. stipitis. J Ind Microbiol Biotechnol 34(11):723–727

    Article  PubMed  CAS  Google Scholar 

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using P. stipitis. Process Biochem 41(11):2333–2336

    Article  CAS  Google Scholar 

  • Agbogbo FK, Haagensen FD, Milam D, Wenger KS (2007) Fermentation of acid pretreated corn stover to ethanol without detoxification using P. stipitis. Appl Biochem Biotechnol (in press)

  • Amartey SA, Jeffries TW (1994) Comparison of corn steep liquor with other nutrients in the fermentation of d-xylose by Pichia stipitis CBS 6054. Biotechnol Lett 16(2):211–214

    Article  CAS  Google Scholar 

  • Debus D, Methner H, Shulze D, Dellweg H (1983) Fermentation of xylose with the yeast Pachysolen tannophilus. Eur J Appl Microbiol Biotechnol 17:287–291

    Article  CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1986) The effect of aeration on d-xylose fermentation by P. tannophilus, P. stipitis, K. marxianus and C. shehatae. Biotechnol Lett 8(12):897–900

    Article  CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1988) The ethanol tolerance of Pichia stipitis Y 7124 grown on a d-xylose, d-glucose and l-arabinose mixture. J Ferment Technol 66(4):417–422

    Article  CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulosic degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme Microb Technol 19:220–225

    Article  CAS  Google Scholar 

  • DOE/SC-0095 (2006) Breaking the biological barriers to cellulosic ethanol. US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy

  • du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956

    Article  CAS  Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1985) Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  Google Scholar 

  • Eken-Saracoglu N, Arslan Y (2000) Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulose hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 22:855–858

    Article  CAS  Google Scholar 

  • Fenske JJ, Hashimoto A, Penner MH (1993) Relative fermentability of lignocellulosic dilute-acid prehydrolyzates-application of a Pichia-based toxicity assay. Appl Biochem Biotechnol 73:145–157

    Article  Google Scholar 

  • Gorgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hagerdahl B (2005) Amino acid supplementation, controlled oxygen limitation and sequential double induction improve heterologous xylanase production by Pichia stipitis. FEMS Yeast Res 5:677–683

    Article  PubMed  CAS  Google Scholar 

  • Grootjen DRJ, van der Lans RGJM, Luyben KChA (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb Technol 12:20–23

    Article  CAS  Google Scholar 

  • Guebel DV, Cordenons A, Cascone O, Guilietti AM, Nudel C (1992) Influence of the nitrogen source on growth and ethanol production by Pichia stipitis NRRL Y-7124. Biotechnol Lett 14(12):1193–1198

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B, Jeppsson H, Olsson L, Mohagheghi A (1994) An interlaboratory comparison of the performance of ethanol-producing microorganisms in a xylose-rich acid hydrolysate. Appl Microbiol Biotechnol 41:62–72

    Google Scholar 

  • Jeffries TW, Jin Y-S (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H., Jin Y-S, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson H, Alexander NJ, Hahn-Hagerdahl B (1995) Existence of cyanide-insensitive respiration in the yeast P.stipitis and its possible influence on product formation during xylose utilization. Appl Environ Microbiol 61(7):2596–2600

    PubMed  CAS  Google Scholar 

  • Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Appl Microb Biotechnol 27:545–548

    CAS  Google Scholar 

  • Klinner U, Fluthgraf S, Freese S, Passoth V (2005) Aerobic induction of respire-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbial Cell Physiol 67:247–253

    CAS  Google Scholar 

  • Laplaza JM, Torres BR, Jin YS, Jeffries TW (2006) Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzyme Microb Technol 38:741–747

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  PubMed  CAS  Google Scholar 

  • Legthelm ME, Prior JC, du Preez JC, Brandt V (1988) An investigation of d-xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microb Biotechnol 28:293–296

    Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsick SW (2004) Adaptive response of yeasts to furfural and 5-hydroxyfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    PubMed  CAS  Google Scholar 

  • Liu ZL, Slininger PJ, Gorsick SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460

    Article  PubMed  Google Scholar 

  • Mahler G, Nudel C (2000) Effect of magnesium ions on the fermentative and respirative functions in Pichia stipitis under oxygen-restricted growth. Microbiol Res 155:31–35

    PubMed  CAS  Google Scholar 

  • Meyrial V, Delgenes JP, Romieu C, Molleta R, Gounot AM (1995) Ethanol tolerance and activity of plasma membrane ATPase in Pichia stipitis grown d-xylose or d-glucose. Enzyme Microb Technol 17:535–540

    Article  CAS  Google Scholar 

  • Moniruzzaman M (1995) Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J Microbiol Biotechnol 11:646–648

    Article  CAS  Google Scholar 

  • Mosier N, Wyamn C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2001a) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2001b) Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. J Ind Microbiol Biotechnol 26:145–150

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2001c) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97(2):107–116

    Article  PubMed  CAS  Google Scholar 

  • Panchal CJ, Bast L, Russell I, Stewart GG (1988) Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can J Microbiol 34:1316–1320

    Article  CAS  Google Scholar 

  • Passoth V, Zimmermann M, Klinner U (1996) Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 57/58:201–212

    Google Scholar 

  • Parekh S, Wayman M (1986) Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnol Lett 8(8):597–600

    Article  CAS  Google Scholar 

  • Parekh SR, Parekh RS, Wayman M (1987) Fermentation of wood-derived acid hydrolyzates in a batch bioreactor and in a continuous dynamic immobilized cell bioreactor by Pichia stipitis R. Process Biochem 22(3):85–91

    CAS  Google Scholar 

  • Parekh SR, Parekh RS, Wayman M (1988) Fermentation of xylose and cellobiose by Pichia stipitis and Brettanomycetes clausenii. Appl Biochem Biotechnol 18:325–338

    Article  CAS  Google Scholar 

  • Shi N-Q, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Shi N-Q, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19:1203–1220

    Article  PubMed  CAS  Google Scholar 

  • Skoog K, Hahn-Hagerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hagerdahl B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    PubMed  CAS  Google Scholar 

  • Slininger PJ, Dien BS, Gorsick SW, Liu ZL (2006) Nitrogen source and mineral optimization enhances d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbial Cell Physiol 72(6):1285–1296

    CAS  Google Scholar 

  • Tran AV, Chambers RP (1986) Ethanol fermentation of red oak acid prehydrolysate by the yeast Pichia stipitis CBS 5776, 1986. Enzyme Microb Technol 8:439–444

    Article  CAS  Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Diijken JP, Scheffers WA (1984) Alcoholic fermentation of d-Xylose by yeasts. Appl Environ Microbiol 47(6):1221–1223

    PubMed  CAS  Google Scholar 

  • Van Zyl C, Prior BA, du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 17:357–369

    Article  Google Scholar 

  • Veduyn C, Van Kleef R, Frank J, Schreuder H, van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226(3):669–677

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Thomas Jeffries who provided a lot of guidance in our work with P. stipitis. We will like to thank our colleagues Dr. Kevin Wenger, Dr. Mads Torry-Smith, Dr. Frank Haagensen and David Milam for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Agbogbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agbogbo, F.K., Coward-Kelly, G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis . Biotechnol Lett 30, 1515–1524 (2008). https://doi.org/10.1007/s10529-008-9728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9728-z

Keywords

Navigation