Skip to main content

Bioethanol Production from Agricultural Biomass: Sources of Cellulose, Pretreatment Methods, and Future Prospects

  • Chapter
  • First Online:
Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels

Abstract

Lignocellulosic or 2G ethanol has enticed a great deal of attention as one of the promising renewable energy fuels which will permit shift from finite fossil fuel to infinite biomass as a resource. The demand for ethanol in the market especially in blended petroleum-based products is increasing day by day as ethanol has higher octane number making it thermally efficient than traditional fuels. Additionally, fuel extracted primarily from biomass can be converted into all the three forms such as solid, liquid, and gaseous fuels. First-generation bioethanol or bioethanol from feedstocks has a fundamental disadvantage that it is mainly based on utilizing crops in the food-feed chain; therefore, interest in second-generation bioethanol from non-edible lignocellulose feedstock is ramping up as an economical and eco-friendly sustainable energy system. The copious availability of lignocellulosic biomass lowers the investment cost, and the obtained biofuel liberates less greenhouse gasses mitigating adverse environmental impacts. In this perspective, the present chapter aims to discuss lignocellulosic ethanol as a substitute to fossil-reliant resources. The chapter highlights the secondary and tertiary sources and optimum condition of fermentation to produce first-, second-, and third-generation bioethanol.

The first section of the chapter emphasizes on the different sources of celluloses and types of microbes which can reduce or ferment multiple substrates and their use in pretreatment as well as fermentation to obtain ethanol. It may be concluded that use of optimum conditions (temperatures, pH, and enzymes) and selecting the most efficient microorganisms give apparently high yield and concentration of bioethanol from lignocellulose biomass. The second section includes an overview of existing techniques used for pretreatment and fermentation. The study also discussed the current and future scenario of bioethanol production in the Indian context. Further efficient utilization of by-products and improved valorization which will directly reduce the final cost of ethanol are cohesively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653

    Article  CAS  Google Scholar 

  • Ahmed B, Mabrouk K, Cherif K, Boudjemaa B (2016) Bioethanol production from date palm fruit waste fermentation using solar energy. Afr J Biotechnol 15(30):1621–1627. https://doi.org/10.5897/ajb2016.15368

    Article  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Al Battashi H, Anu SN, Al Azkawi A, Al Bahry S, Sivakumar N (2020) Enhanced bioethanol production from waste paper through separate hydrolysis and fermentation. Waste Biomass Valor 11(1):121–131

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  CAS  Google Scholar 

  • Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33(12):1680–1686. https://doi.org/10.1016/j.biombioe.2009.09.001

    Article  CAS  Google Scholar 

  • Battista F, Mancini G, Ruggeri B, Fino D (2016) Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products. Renew Energy 88:401–407. https://doi.org/10.1016/j.renene.2015.11.055

    Article  CAS  Google Scholar 

  • Braide W, Kanu IA, Oranusi US, Adeleye SA (2016) Production of bioethanol from agricultural waste. J Fundam Appl Sci 8(2):372–386. https://doi.org/10.4314/jfas.v8i2.14

    Article  CAS  Google Scholar 

  • Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56(3):289–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Butnariu M, Flavius AI (2022) General information about cellulose. Biotechnol Bioprocess 3(3):2766–2314

    Google Scholar 

  • Cabral MMS, Abud A KdS, Silva CEF, Almeida RMRG (2016) Bioethanol production from coconut husk fiber. Ciência Rural 46(10):1872–1877. https://doi.org/10.1590/0103-8478cr20151331

    Article  CAS  Google Scholar 

  • CEA (2022) Central Electricity Authority. https://cea.nic.in/. Accessed 25 Aug 2022

  • Chaturvedi P (2022) Future of renewable energy in India. In: Sayigh A (ed) Sustainable energy development and innovation: selected papers from the World Renewable Energy Congress (WREC) 2020. Springer International Publishing, Cham, pp 625–628

    Chapter  Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose: theory and practice. Springer, Dordrecht, Netherlands, pp 25–71

    Chapter  Google Scholar 

  • Chen X, Yuan X, Chen S, Yu J, Zhai R, Xu Z, Jin M (2021) Densifying lignocellulosic biomass with alkaline chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green Chem 23(13):4828–4839. https://doi.org/10.1039/D1GC01362A

    Article  CAS  Google Scholar 

  • Choi IS, Kim J-H, Wi SG, Kim KH, Bae H-J (2013) Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl Energy 102:204–210

    Article  CAS  Google Scholar 

  • Choi IS, Lee YG, Khanal SK, Park BJ, Bae H-J (2015) A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl Energy 140:65–74. https://doi.org/10.1016/j.apenergy.2014.11.070

    Article  CAS  Google Scholar 

  • Cutzu R, Bardi L (2017) Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation 3(2). https://doi.org/10.3390/fermentation3020024

  • Danso-Boateng E, Ross AB, Mariner T, Hammerton J, Fitzsimmons M (2022) Hydrochars produced by hydrothermal carbonisation of seaweed, coconut shell and oak: effect of processing temperature on physicochemical adsorbent characteristics. SN Appl Sci 4(8):203

    Article  CAS  Google Scholar 

  • Das L, Achinivu EC, Barcelos CA, Sundstrom E, Amer B, Baidoo EEK, Simmons BA, Sun N, Gladden JM (2021a) Deconstruction of woody biomass via protic and aprotic ionic liquid pretreatment for ethanol production. ACS Sustain Chem Eng 9(12):4422–4432. https://doi.org/10.1021/acssuschemeng.0c07925

    Article  CAS  Google Scholar 

  • Das N, Jena PK, Padhi D, Mohanty MK, Sahoo G (2021b) A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01294-3

  • Devendra LP, Pandey A (2016) Hydrotropic pretreatment on rice straw for bioethanol production. Renew Energy 98:2–8. https://doi.org/10.1016/j.renene.2016.02.032

    Article  CAS  Google Scholar 

  • Devi A, Bajar S, Kour H, Kothari R, Pant D, Singh A (2022) Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy Res. https://doi.org/10.1007/s12155-022-10401-9

  • Dhungana P, Prajapati B, Maharjan S, Joshi J (2022) Current trends in lignocellulosic bioethanol production. Int J Appl Sci Biotechnol 10(1):1–11

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MJ, Clemons C, Reiner R, Sabo R, Agarwal UP, Bissessur R, Sojoudiasli H, Carreau PJ, Acharya B (2020) Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci Rep 10(1):19090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque A, Álvarez C, Doménech P, Manzanares P, Moreno AD (2021) Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes 9(2):206–236

    Article  CAS  Google Scholar 

  • Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, Xavier A (2015) Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 186:309–315

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20(3):151–159

    Article  Google Scholar 

  • Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont PS, Kitney R, Reeve B, Ellis T (2016) Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci U S A 113(24):E3431–E3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cubero MA, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100(4):1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • García-Torreiro M, López-Abelairas M, Lu-Chau TA, Lema JM (2016) Fungal pretreatment of agricultural residues for bioethanol production. Ind Crop Prod 89:486–492. https://doi.org/10.1016/j.indcrop.2016.05.036

    Article  CAS  Google Scholar 

  • Gonçalves FA, Ruiz HA, Silvino dos Santos E, Teixeira JA, de Macedo GR (2016) Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy 94:353–365

    Article  Google Scholar 

  • Guerrero AB, Ballesteros I, Ballesteros M (2018) The potential of agricultural banana waste for bioethanol production. Fuel 213:176–185. https://doi.org/10.1016/j.fuel.2017.10.105

    Article  CAS  Google Scholar 

  • Gupta PK, Raghunath SS, Prasanna DV, Venkat P, Shree V, Chithananthan C, Choudhary S, Surender K, Geetha KJC (2019) An update on overview of cellulose, its structure and applications. Cellulose 201(9)

    Google Scholar 

  • Harahap AFP, Husnil YA, Ramadhana MYA, Sahlan M, Hermansyah H, Bambang Prasetya MG (2022) Effect of microwave pretreatment on some properties of bamboo (Gigantochloa apus) for bioethanol production. Int J Adv Sci Eng Inf Technol 12(1):365–371

    Article  Google Scholar 

  • Hsu C-L, Chang K-S, Lai M-Z, Chang T-C, Chang Y-H, Jang H-D (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass Bioenergy 35(5):1878–1884. https://doi.org/10.1016/j.biombioe.2011.01.031

    Article  CAS  Google Scholar 

  • Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioelovich M (2014) Waste paper as promising feedstock for production of biofuel. J Sci Res Rep 3(7):905–916

    Google Scholar 

  • Ishola MM, Jahandideh A, Haidarian B, Brandberg T, Taherzadeh MJ (2013) Simultaneous saccharification, filtration and fermentation (SSFF): a novel method for bioethanol production from lignocellulosic biomass. Bioresour Technol 133:68–73. https://doi.org/10.1016/j.biortech.2013.01.130

    Article  CAS  PubMed  Google Scholar 

  • Jang YW, Lee KH, Yoo HY (2021) Improved sugar recovery from orange peel by statistical optimization of thermo-alkaline pretreatment. Processes 9(3):409–422

    Article  CAS  Google Scholar 

  • Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review. Proc Math Phys Eng Sci 476(2243):20200351

    PubMed  PubMed Central  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. BioFpr 1(2):119–134

    Google Scholar 

  • Joy SP, Krishnan C (2022) Modified organosolv pretreatment for improved cellulosic ethanol production from sorghum biomass. Ind Crop Prod 177:114409. https://doi.org/10.1016/j.indcrop.2021.114409

    Article  CAS  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. ScientificWorldJournal 2014:298153

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaniapan S, Hassan S, Ya H, Patma Nesan K, Azeem M (2021) The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: a review. Sustainability 13(6):3110

    Article  CAS  Google Scholar 

  • Khalil SRA, Abdelhafez AA, Amer EAM (2015) Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agric Sci 60(2):317–324

    Article  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  CAS  PubMed  Google Scholar 

  • Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28(9):3108–3114

    Article  CAS  Google Scholar 

  • Kulkarni Vishakha S, Butte Kishor D, Rathod Sudha S, Mumbai N (2012) Natural polymers—a comprehensive review. Int J Res Pharm Biomed Sci 3(4):1597–1613

    CAS  Google Scholar 

  • Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32(4):517–526

    Article  CAS  Google Scholar 

  • Kumar A, Singh J, Baskar C (2019) Lignocellulosic biomass for bioethanol production through microbes: strategies to improve process efficiency. In: Rastegari A, Yadav A, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems, vol 10. Springer Nature, Cham, pp 357–386

    Chapter  Google Scholar 

  • Kumar R, Basak B, Pal P, Chakrabortty S, Park Y-K, Ali Khan M, Chung W, Chang S, Ahn Y, Jeon B-H (2022) Feasibility assessment of bioethanol production from humic acid-assisted alkaline pretreated Kentucky bluegrass (Poa pratensis L.) followed by downstream enrichment using direct contact membrane distillation. Bioresour Technol 360:127521. https://doi.org/10.1016/j.biortech.2022.127521

    Article  CAS  PubMed  Google Scholar 

  • Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, Edinur HA, Abdul Kari Z, Mohd Noor NH, Ray RR (2021) Bacterial cellulose: production, characterization, and application as antimicrobial agent. Int J Mol Sci 22(23):12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane G, Acharya A, Poudel DK, Aryal B, Gyawali N, Niraula P, Phuyal SR, Budhathoki P, Bk G, Parajuli N (2021) Recent advances in bioethanol production from lignocellulosic biomass. Int J Green Energy 18(7):731–744. https://doi.org/10.1080/15435075.2021.1880910

    Article  CAS  Google Scholar 

  • Lavanya D, Kulkarni PK, Dixit M, Raavi PK, Krishna LNV (2011) Sources of cellulose and their applications – a review. Int J Drug Formul Res 2(6):19–38

    Google Scholar 

  • Li X, Shi Y, Kong W, Wei J, Song W, Wanga S (2022) Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—a review. Energy Rep 8:696–709

    Article  Google Scholar 

  • Lugani Y, Rai R, Prabhu AA, Maan P, Hans M, Kumar V, Kumar S, Chandel AK, Sengar RS (2020) Recent advances in bioethanol production from lignocelluloses: a comprehensive review with a focus on enzyme engineering and designer biocatalysts. J Biofuel Res J 7(4):1267–1295

    Article  CAS  Google Scholar 

  • Ma’ruf A, Pramudono B, Aryanti N (2017) Lignin isolation process from rice husk by alkaline hydrogen peroxide: lignin and silica extracted. AIP Conference Proceedings

    Google Scholar 

  • Maicas S, Ferrer S, Pardo I (2002) NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology 148(1):325–332

    Article  CAS  PubMed  Google Scholar 

  • Malik K, Salama E-S, El-Dalatony MM, Jalalah M, Harraz FA, Al-Assiri MS, Zheng Y, Sharma P, Li X (2021) Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: long-term investigation. Ind Crop Prod 159:113122. https://doi.org/10.1016/j.indcrop.2020.113122

    Article  CAS  Google Scholar 

  • Manikandan S, Subbaiya R, Biruntha M, Krishnan RY, Muthusamy G, Karmegam N (2022) Recent development patterns, utilization and prospective of biofuel production: emerging nanotechnological intervention for environmental sustainability – a review. Fuel 314:122757

    Article  CAS  Google Scholar 

  • Martín C, Galbe M, Nilvebrant N-O, Jönsson LJ (2002) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotechnol 98–100:699–716

    Article  PubMed  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609. https://doi.org/10.1007/s13205-015-0279-4

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101(17):6718–6727. https://doi.org/10.1016/j.biortech.2010.03.116

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Mikulski D, Kłosowski G (2022) Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-08717-9

    Article  CAS  Google Scholar 

  • Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – a review. Renew Sustain Energy Rev 78:1007–1032. https://doi.org/10.1016/j.rser.2017.05.026

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  • Muh E, Tabet F, Amara S (2020) Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes. Curr Altern Energ 4:1–23

    Google Scholar 

  • Munjal N, Mattam A, Pramanik D, Srivastava P, Yazdani SS (2012) Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli. Microb Cell Factories 11(1):145

    Article  CAS  Google Scholar 

  • Narayanaswamy N, Dheeran P, Verma S, Kumar S (2013) Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Green energy and technology. Springer, Berlin, pp 3–34

    Chapter  Google Scholar 

  • Nargotra P, Sharma V, Gupta M, Kour S, Bajaj BK (2018) Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresour Technol 267:560–568. https://doi.org/10.1016/j.biortech.2018.07.070

    Article  CAS  PubMed  Google Scholar 

  • Nazar M, Xu L, Ullah MW, Moradian JM, Wang Y, Sethupathy S, Iqbal B, Nawaz MZ, Zhu D (2022) Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: a clean approach for agro-biomass utilization. J Clean Prod 360. https://doi.org/10.1016/j.jclepro.2022.132171

  • Nguyen QA, Yang J, Bae H-J (2017) Bioethanol production from individual and mixed agricultural biomass residues. Ind Crop Prod 95:718–725. https://doi.org/10.1016/j.indcrop.2016.11.040

    Article  CAS  Google Scholar 

  • Nisa LLA, Aritonang S, Manawan MT, Sudiro T (2022) Structure of cellulose and its use: a review. Int J Educ Social Sci Res 5(2):54–67

    Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  PubMed  Google Scholar 

  • Oyegoke T, Tongshuwar GT, Oguche JE (2022) Biomass pretreatment as a key process in bioethanol productions: a review. J Eng Sci XXIX(1):130–141

    Google Scholar 

  • Pan X, Xle D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1079

    Article  PubMed  Google Scholar 

  • Pant S, Ritika, Kuila A (2022) Chapter 8 - Pretreatment of lignocellulosic biomass for bioethanol production. In: Tuli D, Kasture S, Kuila A (eds) Advanced biofuel technologies. Elsevier, Amsterdam, pp 177–194

    Chapter  Google Scholar 

  • Pennells J, Godwin ID, Amiralian N, Martin DJ (2019) Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27(2):575–593

    Article  Google Scholar 

  • Piwowar A, Dzikuć M (2022) Bioethanol production in Poland in the context of sustainable development-current status and future prospects. Energies 15(7):10.3390/en15072582

    Article  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sustain Energy Rev 32:559–578

    Article  Google Scholar 

  • Premjet S (2018) Potential of weed biomass for bioethanol production. In: Basso TP, Basso LC (eds) Fuel ethanol production from sugarcane. IntechOpen, London

    Google Scholar 

  • Raja Sathendra E, Baskar G, Praveenkumar R, Gnansounou E (2019) Bioethanol production from palm wood using Trichoderma reesei and Kluyveromyces marxianus. Bioresour Technol 271:345–352. https://doi.org/10.1016/j.biortech.2018.09.134

    Article  CAS  PubMed  Google Scholar 

  • Rajabi M, Nourisanami F, Ghadikolaei KK, Changizian M, Noghabi KA, Zahiri HS (2022) Metagenomic psychrohalophilic xylanase from camel rumen investigated for bioethanol production from wheat bran using Bacillus subtilis AP. Sci Rep 12(1):8152. https://doi.org/10.1038/s41598-022-11412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energy Rev 80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  • REN21 (2022) Renewables 2021 global status report (ISBN 978-3-948393-04-5). REN21 Secretariat, Paris

    Google Scholar 

  • Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1

    Article  Google Scholar 

  • Sadhukhan J, Martinez-Hernandez E, Murphy RJ, Ng DKS, Hassim MH, Siew Ng K, Yoke Kin W, Jaye IFM, Leung Pah Hang MY, Andiappan V (2018) Role of bioenergy, biorefinery and bioeconomy in sustainable development: strategic pathways for Malaysia. Renew Sustain Energy Rev 81:1966–1987

    Article  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4):1893–1931

    Article  CAS  Google Scholar 

  • Selvakumar P, Adane AA, Zelalem T, Hunegnaw BM, Karthik V, Kavitha S, Jayakumar M, Karmegam N, Govarthanan M, Kim W (2022) Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel 321:124060. https://doi.org/10.1016/j.fuel.2022.124060

    Article  CAS  Google Scholar 

  • Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valor 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  CAS  Google Scholar 

  • Sherpa KC, Kundu D, Banerjee S, Ghangrekar MM, Banerjee R (2022) An integrated biorefinery approach for bioethanol production from sugarcane tops. J Clean Prod 352:131451. https://doi.org/10.1016/j.jclepro.2022.131451

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen C-W, Tsai M-L, Dong C-D (2022) Consolidated bioprocessing of lignocellulosic biomass: technological advances and challenges. Bioresour Technol 354. https://doi.org/10.1016/j.biortech.2022.127153

  • Statista (2022). https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/. Accessed 20 Aug 2022

  • Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5(4):1333–1339

    Article  PubMed  Google Scholar 

  • Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9(2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Hoshino K (2018) Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresour Bioprocess 5(1):16

    Article  Google Scholar 

  • Tiwari S, Beliya E, Vaswani M, Khawase K, Verma D, Gupta N, Paul JS, Jadhav SK (2022) Rice husk: a potent lignocellulosic biomass for second generation bioethanol production from Klebsiella oxytoca ATCC 13182. Waste Biomass Valor 13(5):2749–2767. https://doi.org/10.1007/s12649-022-01681-5

    Article  CAS  Google Scholar 

  • Tran TTA, Le TKP, Mai TP, Nguyen DQ (2019) Bioethanol production from lignocellulosic biomass. In: Yun Y (ed) Alcohol fuels - current technologies and future prospect. IntechOpen, London, pp 1–13

    Google Scholar 

  • Uçkun Kiran E, Liu Y (2015) Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 159:463–469

    Article  Google Scholar 

  • Ummalyma SB, Supriya RD, Sindhu R, Binod P, Nair RB, Pandey A, Gnansounou E (2019) Biological pretreatment of lignocellulosic biomass-current trends and future perspectives. In: Basile A, Dalena F (eds) Second and third generation of feedstocks. Elsevier, Amsterdam, pp 197–212

    Chapter  Google Scholar 

  • Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, Sáenz-Galindo A, Cervantes-Cisneros DE, Aguilar CN, Fernandes BD, Ruiz HA (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 5(1):780–791. https://doi.org/10.18331/brj2018.5.1.5

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98(2):296–301

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Li Y (2013) Solid-state biological pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Berlin

    Google Scholar 

  • Wang M, Zhou D, Wang Y, Wei S, Yang W, Kuang M, Ma L, Fang D, Xu S, Du S-k (2016) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532. https://doi.org/10.1016/j.fuel.2016.07.061

    Article  CAS  Google Scholar 

  • Wayman M (1958) The manufacture of chemical cellulose from wood. Can J Chem Eng 36:271–276

    Article  Google Scholar 

  • Wi SG, Choi IS, Kim KH, Kim HM, Bae H-J (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6(166):1–7

    Google Scholar 

  • Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102(11):6473–6478. https://doi.org/10.1016/j.biortech.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Shi Z, Xu G, Qin Y, Deng J, Yang J (2019) Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour Technol 274:261–266. https://doi.org/10.1016/j.biortech.2018.11.088

    Article  CAS  PubMed  Google Scholar 

  • Yildirim O, Ozkaya B, Altinbas M, Demir A (2021) Statistical optimization of dilute acid pretreatment of lignocellulosic biomass by response surface methodology to obtain fermentable sugars for bioethanol production. Int J Energy Res 45(6):8882–8899. https://doi.org/10.1002/er.6423

    Article  CAS  Google Scholar 

  • Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S (2010) Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160(2):539–551

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Sun Z-F, Zhang C-C, Nan J, Ren N-Q, Lee D-J, Chen C (2022) Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresour Technol 343:126123. https://doi.org/10.1016/j.biortech.2021.126123

    Article  CAS  PubMed  Google Scholar 

  • Ziaei-Rad Z, Fooladi J, Pazouki M, Gummadi SN (2021) Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: an economically viable method for wheat straw fractionation. Biomass Bioenergy 151:106140. https://doi.org/10.1016/j.biombioe.2021.106140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, N., Shendkar, T.G., Pardhi, A., Suthar, S.P., Patil, G.S., Pathak, P.D. (2023). Bioethanol Production from Agricultural Biomass: Sources of Cellulose, Pretreatment Methods, and Future Prospects. In: Pathak, P.D., Mandavgane, S.A. (eds) Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-19-7481-6_11

Download citation

Publish with us

Policies and ethics