Skip to main content
Log in

Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Lignin degradation by white-rot fungi has received considerable attention as a means for reducing accumulation of lignocellulosic wastes in the environment. The stimulatory effect of surfactants on fungal lignocellulose bioconversion also has attracted wide interest. In this study the influence of dirhamnolipid biosurfactant on biodegradation of rice straw by Phanerochaete chrysosporium was investigated. It was shown that the biodelignification process of rice straw can be significantly enhanced by the presence of dirhamnolipid biosurfactant. In particular, the dirhamnolipid at the concentration of 0.007% increased the peak activity of lignin peroxidase (LiP) by 86% without affecting the manganese peroxidase (MnP) activity. The water-soluble organic carbon (WSOC) contents in the straw substrates as well as the microbial growth and activity were effectively improved by dirhamnolipid, while the degradation rate of lignin increased by 54% with dirhamnolipid of 0.007%. Observed chemical structural and morphological changes showed that the straw substrates were delignified in the presence of dirhamnolipid with the formation of terrace-like fragments separated from the inner cellular fibers and the release of simple compounds. Variation partitioning analysis revealed that the dirhamnolipid addition induced a significant straw biodelignification which explained 22.1% (P = 0.013) of the variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abouelwafa R, Baddi GA, Souabi S, Winterton P, Cegarra J, Hafidi M (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: physical-chemical, microbiological, and spectroscopic analysis. Bioresour Technol 99:8571–8577

    Article  CAS  PubMed  Google Scholar 

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Production of an endoglucanase by the shipworm bacterium Teredinobacter turnirae. J Ind Microbiol Biotechnol 31:41–47

    Article  CAS  PubMed  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brown JA, Alic M, Gold MH (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173:4101–4106

    CAS  PubMed  Google Scholar 

  • Chi YJ, Yin HW (2007) Lignin degradation mechanisms of ligninolytic enzyme system, manganese peroxidase, laccase and lignin peroxidase, produced by wood white rot fungi. Mycosystema 26:153–160

    CAS  Google Scholar 

  • Dorado J, Almendros G, Camarero S, Martínez AT, Vares T, Hatakka A (1999) Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme Microb Technol 25:605–612

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  • Fu HY, Zeng GM, Zhong H, Yuan XZ, Wang W, Huang GH, Li JB (2007) Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain. Colliods Surf B 58:91–97

    Article  CAS  Google Scholar 

  • Fu P, Hu S, Xiang J, Sun L, Yang T, Zhang A, Zhang JY (2009) Mechanism study of rice Straw pyrolysis by fourier transform infrared technique. Chin J Chem Eng 17:522–529

    Article  CAS  Google Scholar 

  • Guo GL, Chen WH, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour Technol 99:6046–6053

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese per-oxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Huang DL, Zeng GM, Feng CL, Hu S, Jiang XY, Tang L, Su FF, Zhang Y, Zeng W, Liu HL (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951

    Article  CAS  PubMed  Google Scholar 

  • Kumar AG, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97:1521–1528

    Article  CAS  Google Scholar 

  • Liu J, Yuan XZ, Zeng GM, Shi JG, Chen S (2006) Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem 41:2347–2351

    Article  CAS  Google Scholar 

  • Liu XL, Zeng GM, Tang L, Zhong H, Wang RY, Fu HY, Liu ZF, Huang HL, Zhang JC (2008) Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochem 43:1300–1303

    Article  CAS  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  • Pérez J, Muňoz Dorado J, De la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Rogalski J, Szczodrak J, Janusz G (2006) Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii. Bioresour Technol 97:469–476

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Shi JG, Zeng GM, Yuan XZ, Dai F, Liu J, Wu XH (2006) The stimulatory effects of surfactants on composting of waste rich in cellulose. World J Microbiol Biotechnol 22:1121–1127

    Article  CAS  Google Scholar 

  • Sotirova A, Spasova D, Vasileva Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Micrbiol Res 164:297–303

    Article  CAS  Google Scholar 

  • Stepanova EV, Koroleva OV, Vasilchenko LG, Karapetyan KN, Landesman EO, Yavmetdinov IS, Kozlov YP, Rabinovich ML (2003) Fungal decomposition of oat straw during liquid and solid-state fermentation. Appl Biochem Microbiol 39:74–84

    CAS  Google Scholar 

  • Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zeng GM, Shen GL, Zhang Y, Huang GH, Li JB (2006) Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Anal Chim Acta 579:109–116

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zeng GM, Shen GL, Li YP, Liu C, Li Z, Luo J, Fan CZ, Yang CP (2009) Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosens Bioelectron 24:1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer AB, Beenackers AACM, Burghard R, Mulder NH, Fok JJ (1992) Gas/liquid mass transfer in a four-phase stirred fermentor: Effects of organic phase hold-up and surfactant concentration. Chem Eng Sci 47:2369–2374

    Article  Google Scholar 

  • Van Soest PJ, Rovertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  PubMed  Google Scholar 

  • Yuan XZ, Ren FY, Zeng GM, Zhong H, Fu HY, Xu XM (2007) Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Appl Microbiol Biotechnol 76:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Fu HY, Zhong H, Yuan XZ, Fu MX, Wang W, Huang GH (2007a) Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18:303–310

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Huang DL, Huang GH, Hu TJ, Jiang XY, Feng CL, Chen YN, Tang L, Liu HL (2007b) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour Technol 98:320–326

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Zeng GM, Huang GH, Fu HY, Wang W (2006) Effects of rhamnolipid on degradation of granule organics by a Pseudomonas Aeruginosa strain. China Environ Sci 26:201–205

    CAS  Google Scholar 

  • Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 77:447–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 50678062, No. 50978087, No. 50978088 and No. 50808073), the Program for Changjiang Scholars and Innovative Research Team in University (IRT0719), the National Basic Research Program (973 Program) (No. 2005CB724203), the Environmental Protection Technology Research Program of Hunan (No. 2007185) and the Hunan Key Scientific Research Project (No. 2009FJ1010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Zhong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, YS., Yuan, XZ., Zeng, GM. et al. Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21, 615–624 (2010). https://doi.org/10.1007/s10532-010-9329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9329-0

Keywords

Navigation