Skip to main content
Log in

Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article studies the effect of nanoparticle aggregation on the 3D flow of titanium nanoliquid based on ethylene glycol \( ( {\text{C}}_{ 2} {\text{H}}_{ 6} {\text{O}}_{2} - {\text{TiO}}_{2} ) \) due to an exponentially elongated surface. Thermal analysis is carried out considering linear thermal radiation, Joule heating, and mechanisms of the heat source/sink, while the aspect of the homogeneous single-order chemical reaction is included in the analysis of the solute. The variable magnetic field is also accounted. The modified Maxwell model (Maxwell–Bruggeman) is implemented to estimate the effective conductivity of the nanoliquid. The displayed equations are moderated in quantities without dimensions. The 2-point nonlinear boundary value problem (BVP) is solved by the shooting procedure. The importance of effective parameters is described through graphs. Numerical data are presented to study the friction factor, the heat transfer rate, and the mass transfer rate. It has been established that the aggregation of nanoparticles significantly improves the thermal field. Furthermore, the effect of magnetism is more in ordinary fluid than in nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

x, y, z :

Cartesian coordinate system (m)

u, v, w :

Velocity components along with x, y, and z directions, respectively (m/s)

\( \mu_{nf} \) :

The viscosity of the nanofluid (kg/ms)

\( \nu_{nf} \) :

The kinetic velocity of the nanofluid (m2/s)

\( \nu_{f} \) :

Kinematic viscosity of the base fluid (m2/s)

\( \left( {\rho c_{p} } \right)_{nf} \) :

Specific heat capacitance of the nanofluid (J/kg K)

\( \left( {\rho c_{p} } \right)_{f} \) :

Heat capacity of foundation liquid (J/kg K)

\( \left( {\rho c_{p} } \right)_{s} \) :

Heat capability of solid nanoparticle (J/kg K)

k nf :

Thermal conductivity of the nanofluid (m2/s)

k f :

Thermal conductivity of the base fluid (m2/s)

k s :

Thermal conductivity of the solid nanoparticle (m2/s)

\( \rho_{nf} \) :

The density of nanofluid (kg/m3)

\( \rho_{f} \) :

The density of the base fluid (kg/m3)

\( \rho_{s} \) :

The density of solid nanoparticle (kg/m3)

Ec:

Eckert number

Pr:

Prandtl number

Kc * :

The reaction rate of the solute

Kc :

Chemical reaction parameter

Q * :

Heat source/sink coefficient

Sc:

Schmidt number

D B :

Brownian motion coefficient (m2/s)

\( \delta \) :

Ratio parameter

Q :

Heat source/sink parameter

A :

Temperature exponent

A * :

Concentration exponent

R :

Radiation parameter

T :

Temperature K (°C)

T w :

The variable temperature at the sheet

\( T_{\infty } \) :

Free-stream temperature K (°C)

C :

Concentration

\( \phi \) :

The dimensionless nanoparticle volume fraction

\( C_{\infty } \) :

Free-stream concentration

C w :

Variable concentration at the sheet

f :

Dimensionless velocity

\( \theta \) :

Dimensionless temperature

\( \varPhi \) :

Dimensionless concentration

C f :

The local skin friction coefficient

Nux :

Local Nusselt number

Shx :

Local Sherwood number

References

  1. Choi, S.U.S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. FED 231/MD 66, pp. 99–105. AMSE, New York (1995)

    Google Scholar 

  2. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  3. Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two component systems. IEC Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  4. Das, S.K.; Choi, S.U.S.: Nanofluids: Science and Technology, p. 124. Wiley, New York (2007)

    Book  Google Scholar 

  5. Lee, S.; Choi, S.U.S.; Li, S.; Eastman, J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121, 280–289 (1999)

    Article  Google Scholar 

  6. Ghosh, S.; Mukhopadhyay, S.: Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04221-w

    Article  Google Scholar 

  7. Ghosh, S.; Mukhopadhyay, S.: Viscous flow due to an exponentially shrinking permeable sheet in nanofluid in presence of slip. Int. J. Comput. Methods Eng. Sci. Mech. 18, 309–317 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sravan Kumar, T.; Rushi Kumar, B.: A comparative study of thermal radiation effects on MHD flow of nanofluids and heat transfer over a stretching sheet. Front. Heat Mass Transf. 9, 13–19 (2017)

    Google Scholar 

  9. Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444, 333–337 (2007)

    Article  Google Scholar 

  10. Yu, W.; Xie, H.; Chen, L.; Li, Y.: Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochimica 491, 92–96 (2009)

    Article  Google Scholar 

  11. Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic field. Arab. J. Sci. Eng. 44, 1269–1282 (2019)

    Article  Google Scholar 

  12. Shah, Z.; Ullah, A.; Bonyah, E.; Ayaz, M.; Islam, S.; Khan, I.: Hall effect on Titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface. AIP Adv. (2019). https://doi.org/10.1063/1.5099435

    Article  Google Scholar 

  13. Mebarek-Oudina, F.: Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Trans. Asian Res. (2018). https://doi.org/10.1002/htj.21375

    Article  Google Scholar 

  14. Hosseinzadeh, K.; Afsharpanah, F.; Zamani, S.; Gholinia, M.; Ganji, D.D.: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud. Therm. Eng. 12, 228–236 (2018)

    Article  Google Scholar 

  15. Siddiqui, A.A.; Sheikholeslami, M.: TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity. Appl. Math. Mech. 39, 1201–1216 (2018)

    Article  MathSciNet  Google Scholar 

  16. Danish, M.; Yahya, S.M.; Saha, B.B.: Modelling and optimization of thermophysical properties of aqueous titania nanofluid using response surface methodology. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08673-z

    Article  Google Scholar 

  17. Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.: Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor. J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.09.084

    Article  Google Scholar 

  18. Waqas, H.; Khan, S.U.; Bhatti, M.M.; Imran, M.: Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J. Therm. Anal. Calorim. 2020, 1–14 (2020)

    Google Scholar 

  19. Chamkha, A.J.; Rashad, A.M.; Armaghani, T.; Mansour, M.A.: Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J. Therm. Anal. Calorim. 132, 1291–1306 (2018)

    Article  Google Scholar 

  20. Shamsabadi, H.; Rashidi, S.; Esfahani, J.A.: Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J. Therm. Anal. Calorim. 135, 1009–1019 (2019)

    Article  Google Scholar 

  21. Seyyedi, S.M.; Dogonchi, A.S.; Ganji, D.D.; Hashemi-Tilehnoee, M.: Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J. Therm. Anal. Calorim. 138, 1607–1621 (2019)

    Article  Google Scholar 

  22. Khan, A.A.; Marin, M.; Ellahi, R.: Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transf. Res. 50, 1061–1080 (2019)

    Article  Google Scholar 

  23. Sheikholeslami, M.; Gorji-Bandpy, M.; Ellahi, R.; Zeeshan, A.: Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magn. Magn. Mater. 369, 69–80 (2014)

    Article  Google Scholar 

  24. Wolthers, W.; Duits, M.H.G.; van den Ende, D.; Mellema, J.: Shear history dependence of the viscosity of aggregated colloidal dispersions. J. Rheol. 40, 799–811 (1996)

    Article  Google Scholar 

  25. Benos, L.T.; Karvelas, E.G.; Sarris, I.E.: Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm. Sci. Eng. Prog. 2019, 263–271 (2019)

    Article  Google Scholar 

  26. Ellahi, R.; Hassan, M.; Zeeshan, A.: Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pac. J. Chem. Eng. 11, 179–186 (2016)

    Article  Google Scholar 

  27. Kolsi, L.; Oztop, H.; Ghachem, K.; Almeshaal, M.; Mohammed, H.; Babazadeh, H.; Abu-Hamdeh, N.: Numerical study of periodic magnetic field effect on 3D natural convection of MWCNT-water/nanofluid with consideration of aggregation. Processes 7, 957 (2019)

    Article  Google Scholar 

  28. Kleinstreuer, C.; Feng, Y.: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res. Lett. 6, 229 (2011)

    Article  Google Scholar 

  29. Eapen, J.; Rusconi, R.; Piazza, R.; Yip, S.: The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132, 102402-1–102402-14 (2010)

    Article  Google Scholar 

  30. Koo, J.; Kang, Y.; Kleinstreuer, C.: A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions. Nanotechnology 19, 375705-1–375705-7 (2008)

    Google Scholar 

  31. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. 24, 636–664 (1935)

    Article  Google Scholar 

  32. Liu, I.-C.; Wang, H.-H.; Peng, Y.-F.: Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem. Eng. Commun. 200, 253–268 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editor and anonymous reviewers for their constructive suggestions, and one of the authors (B Mahanthesh) expresses his sincere thanks to the Management, CHRIST (Deemed to be University), Bangalore, India, for their support to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahanthesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, K., Mahanthesh, B. Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow. Arab J Sci Eng 46, 5865–5873 (2021). https://doi.org/10.1007/s13369-020-04979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04979-5

Keywords

Navigation