Skip to main content
Log in

TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem (BVP). The BVP is analytically solved with the homotopy analysis method (HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2 nanoparticles increases. This confirms the fact that the occurrence of the TiO2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased. An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water, while the Nusselt number of the nanofluid is larger than that of pure water. However, both the parameters increase if the magnetic field intensity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663–1678 (2017) https://doi.org/10.1007/s10483-017-2289-8

    Article  MathSciNet  MATH  Google Scholar 

  2. JONES, B. J., VERGNE, M. J., BUNK, D. M., LOCASCIO, L. E., and HAYES, M. A. Cleavage of Peptides and Proteins using light-generated radicals from titanium dioxide. Analytical Chemistry 79, 1327–1332 (2007)

    Article  Google Scholar 

  3. KONSTANTINOU, I. K. and ALBANIS, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49, 1–14 (2004)

    Article  Google Scholar 

  4. LINDSTRÖM, H., ÖDERGREN, S., SOLBRAND, A., RENSMO, H., HJELM, J., HAGFELDT, A., and LINDQUIST, S. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films. Journal of Physical Chemistry B, 101, 7717–7722 (1997)

    Article  Google Scholar 

  5. DU, X., WANG, Q., FENG, T., CHEN, X., LI, L., LI, L., MENG, X., XIONG, L., and SUN, X. One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for highperformance Lithium-ion batteries. Scientific Reports, 6, 20138 (2016)

    Article  Google Scholar 

  6. SU, D., DOU, S., and WANG, G. Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chemistry of Materials, 27, 6022–6029 (2015)

    Article  Google Scholar 

  7. YUAN, S. A., CHEN, W. H., and HU, S. S. Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Materials Science and Engineering: C, 25, 479–485 (2005)

    Article  Google Scholar 

  8. BRAUN, J. H., BAIDINS, A., and MARGANSKI, R. E. TiO2 pigment technology: a review. Progress in Organic Coatings, 20, 105–138 (1992)

    Article  Google Scholar 

  9. ZALLEN, R. and MORET, M. P. The optical absorption edge of brookite TiO2. Solid State Communications, 137, 154–157 (2006)

    Article  Google Scholar 

  10. CHEN, X. and MAO, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chemical Reviews, 107, 2891–2959 (2007)

    Article  Google Scholar 

  11. MAHENDRAN, M., LEE, G. C., SHARMA, K. V., and SHAHRANI, A. Performance evaluation of evacuated tube solar collector using water-based titanium oxide (TiO2) nanofluid. Journal of Mechanical Engineering Science, 3, 301–310 (2012)

    Article  Google Scholar 

  12. SAID, Z., SABIHA, M. A., SAIDUR, R., HEPBASLI, A., RAHIM, N. A., MEKHILEF, S., and WARD, T. A. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. Journal of Cleaner Production, 92, 343–353 (2015)

    Article  Google Scholar 

  13. DINARVAND, S. and POP, I. Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Advanced Powder Technology, 28, 900–909 (2017)

    Article  Google Scholar 

  14. FEDELE, L., COLLA, L., and BOBBO, S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. International Journal of Refrigeration, 35, 1359–1366 (2012)

    Article  Google Scholar 

  15. KAO, M. and LIN, C. Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. Journal of Alloys and Compounds, 483, 456–459 (2009)

    Article  Google Scholar 

  16. SAJADI, A. R. and KAZEMI, M. H. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. International Communications in Heat and Mass Transfer, 38, 1474–1478 (2011)

    Article  Google Scholar 

  17. RADIOM, M., YANG, C., and CHAN, W. K. Dynamic contact angle of water-based titanium oxide nanofluid. Nanoscale Research Letters, 8, 1–9 (2013)

    Article  Google Scholar 

  18. HAMID, A. K., AZMI, W. H., MAMAT, R., USRI, N. A., and NAJAFI, G. Effect of temperature on heat transfer coefficient of titanium dioxide in Ethylene Glycol-based nanofluid. Journal of Mechanical Engineering Science, 8, 1367–1375 (2015)

    Article  Google Scholar 

  19. MATTHIAS, H. and BUSCHMANN, U. F. Improvement of thermosyphon performance by employing nanofluid. International Journal of Refrigeration, 40, 416–428 (2014)

    Article  Google Scholar 

  20. NAPHON, P., ASSADAMONGKOL, P., and BORIRAK, T. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. International Communications in Heat and Mass Transfer, 35, 1316–1319 (2008)

    Article  Google Scholar 

  21. SHEIKHOLESLAMI, M. and ROKNI, H. B. Simulation of nanofluid heat transfer in presence of magnetic field: A review. International Journal of Heat and Mass Transfer, 115, 1203–1233 (2017)

    Article  Google Scholar 

  22. SHEIKHOLESLAMI, M. and SHEHZAD, S. A. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. International Journal of Heat and Mass Transfer, 120, 1200–1212 (2018)

    Article  Google Scholar 

  23. SHEIKHOLESLAMI, M. and SEYEDNEZHAD, M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. International Journal of Heat and Mass Transfer, 120, 772–781 (2018)

    Article  Google Scholar 

  24. SHEIKHOLESLAMI, M. and ROKNI, H. B. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. International Journal of Heat and Mass Transfer, 118, 823–831 (2018)

    Article  Google Scholar 

  25. SHEIKHOLESLAMI, M. and SHEHZAD, S. A. Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source. International Journal of Heat and Mass Transfer, 118, 182–192 (2018)

    Article  Google Scholar 

  26. SHEIKHOLESLAMI, M. and SADOUGHI, M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116, 909–919 (2018)

    Article  Google Scholar 

  27. SHEIKHOLESLAMI, M. and ROKNI, H. B. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107, 288–299 (2017)

    Article  Google Scholar 

  28. SHEIKHOLESLAMI, M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. Journal of Molecular Liquids, 249, 1212–1221 (2018)

    Article  Google Scholar 

  29. SHEIKHOLESLAMI, M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids, 249, 921–929 (2018)

    Article  Google Scholar 

  30. SHEIKHOLESLAMI, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids, 249, 739–746 (2018)

    Article  Google Scholar 

  31. SHEIKHOLESLAMI, M., M. SHAMLOOEI, M., and MORADI, R. Fe3O4-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. Journal of Molecular Liquids, 249, 429–437 (2018)

    Article  Google Scholar 

  32. SHEIKHOLESLAMI, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. Journal of Molecular Liquids, 234, 364–374 (2017)

    Article  Google Scholar 

  33. SHEIKHOLESLAMI, M. and ROKNI, H. B. Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. Journal of Molecular Liquids, 232, 390–395 (2017)

    Article  Google Scholar 

  34. SHEIKHOLESLAMI, M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-Darcy model. Journal of Molecular Liquids, 225, 903–912 (2017)

    Article  Google Scholar 

  35. SHEIKHOLESLAMI, M. Numerical investigation of MHD nanofluid free convective heat transfer in a porous tilted enclosure. Engineering Computations, 34(6), 1939–1955 (2017)

    Article  MathSciNet  Google Scholar 

  36. SHEIKHOLESLAMI, M. and ROKNI, H. B. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Computer Methods in Applied Mechanics and Engineering, 317, 419–430 (2017)

    Article  MathSciNet  Google Scholar 

  37. SHEIKHOLESLAMI, M. and ROKNI, H. B. Free convection of CuO-H2O nanofluid in a curved porous enclosure using mesoscopic approach. International Journal of Hydrogen Energy, 42, 14942–14949 (2017)

    Article  Google Scholar 

  38. SHEIKHOLESLAMI, M. and ROKNI, H. B. Magnetohydrodynamic CuO-water nanofluid in a porous complex-shaped enclosure. Journal of Thermal Science and Engineering Applications, 9, 41007 (2017)

    Article  Google Scholar 

  39. OTHMAN, M. A., AMAT, N. F., AHMAD, B. H., and RAJAN, J. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. Journal of Physics: Conference Series, 495, 012027 (2014)

    Google Scholar 

  40. JOSE, R., THAVASI, V., and RAMAKRISHNA, S. Metal oxides for dye-sensitized solar cells. Journal of the American Ceramic Society, 92, 289–301 (2009)

    Article  Google Scholar 

  41. PHAM, T. T. T., MATHEWS, N., LAM, Y. M., and MHAISALKAR, S. Enhanced efficiency of dye-Sensitized solar cells with mesoporous-acroporous TiO2 photoanode obtained using ZnO template. Journal of Electronic Materials, 46, 3801–3807 (2017)

    Article  Google Scholar 

  42. VIJAYAKUMAR, P., PANDIAN, M. S., and RAMASAMY, P. Tungsten carbide nanorods with titanium dioxide composite counter electrode: effect of NMP to enhanced efficiency in dye sensitized solar cell (DSSC). AIP Conference Proceedings, 1832, 050002 (2017)

    Article  Google Scholar 

  43. TU, Y., TANG, L., ZHENG, M., HUO, J., WU, J., LIN, J., and HUANG, M. Controllable agglomeration of titanium dioxide particles by one-step solvothermal reaction toward efficient dye-sensitized solar cell. Journal of Alloys and Compounds, 694, 1083–1088 (2017)

    Article  Google Scholar 

  44. GAIKWAD, M. A., MANE, A. A., DESAI, S. P., and MOHOLKAR, A. V. Template-free TiO2 photoanodes for dye-sensitized solar cell via modified chemical route. Journal of Colloid and Interface Science, 488, 269–276 (2017)

    Article  Google Scholar 

  45. CURRIE, I. G. Fundamental Mechanics of Fluids, 3rd ed., McGraw Hill, New York (2003)

    MATH  Google Scholar 

  46. SHEIKHOLESLAMI, M. and SADOUGHI, M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. International Journal of Heat and Mass Transfer, 113, 106–114 (2017)

    Article  Google Scholar 

  47. GUPTA, V. G., JAIN, A., and JHA, A. K. The effect of variable thermal conductivity and the inclined magnetic field on MHD plane Poiseuille flow past non-uniform plate temperature. Global Journal of Science Frontier Research, 15, 1–8 (2015)

    Google Scholar 

  48. HO, C. J., CHEN, M. W., and LI, Z. W. Numerical simulation of natural convection of nanofluid. International Journal of Heat and Mass Transfer, 51, 4506–4516 (2008)

    Article  MATH  Google Scholar 

  49. AMINOSSADATI, S. M. and GHASEMI, B. Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28, 630–640 (2009)

    Article  MATH  Google Scholar 

  50. BRINKMAN, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571–581 (1952)

    Article  Google Scholar 

  51. MAXWELL, J. A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Oxford (1904)

    MATH  Google Scholar 

  52. HE, J. H. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation, 135, 73–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. AHMED, M. A., SHUAIB, N. H., YUSOFF, M. Z., and AL-FALAHI, A. H. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. International Communications in Heat and Mass Transfer, 38, 1368–1375 (2011)

    Article  Google Scholar 

  54. SCHLICHTING, H. Boundary Layer Theory, 4th ed., McGraw Hill, New York (1960)

    MATH  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to the reviewers for the significant and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Siddiqui.

Additional information

Citation: SIDDIQUI, A. A. and SHEIKHOLESLAMI, M. TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity. Applied Mathematics and Mechanics (English Edition), 39(8), 1201–1216 (2018) https://doi.org/10.1007/s10483-018-2359-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, A.A., Sheikholeslami, M. TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity. Appl. Math. Mech.-Engl. Ed. 39, 1201–1216 (2018). https://doi.org/10.1007/s10483-018-2359-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2359-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation