Skip to main content
Log in

Shape effect of nanoparticles and entropy generation analysis for magnetohydrodynamic flow of \(\left( {A{l_2}{O_3} - Cu/{H_2}O} \right)\) hybrid nanomaterial under the influence of Hall current

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The purpose of the present study is to examine the swirling flow problem for hybrid nanoliquid \(\left( {A{l_2}{O_3} - Cu/{H_2}O} \right)\) over a rotating disk under the influence of Hall current and a convectively heated surface. The flow model is developed using the well-known Tiwari and Das nanofluid model. Joule and viscous dissipations produced in the presence of magnetic field and viscosity, respectively, are accounted in the energy equation. Mathematical modeling of the total entropy production rate is also presented. The nonlinear partial differential equations, which describe the flow phenomenon, are metamorphosed by transformation into the non-dimensional ordinary differential equations (ODEs). The bvp4c technique is then employed in conjunction with the boundary conditions to solve the constructed ODEs. The influences of the relevant flow characteristics on entropy production, flow field (axial and tangential velocity), Bejan number and temperature profiles are depicted graphically. In addition, the effect of shape factor of scattered nanoparticles, such as \(Al_2O_3\) and Cu, on the surface drag force and rate of heat transference is measured and tabulated. The results show that as the Hall parameter rises, the axial fluid velocity rises as well. Entropy generation improves with either the increase in magnetic parameter or Brinkman number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M S Liu, M C C Lin, I T Huang and C C Wang Int. Comm. Heat Mass Transf. 32 1202 (2005)

    Article  Google Scholar 

  2. M Turkyilmazoglu Chem. Engg. Sci. 84 182 (2012)

    Article  Google Scholar 

  3. J Sarkar, P Ghosh and A Adil Ren. Sus. Energ. Rev. 43 164 (2015)

    Article  Google Scholar 

  4. F Selimefendigil and A J Chamkha Comp. Therm. Sci.: An Int. J. 8 555 (2016)

    Article  Google Scholar 

  5. S Ghadikolaei M Yassari, H Sadeghi, K Hosseinzadeh and D Ganji Powder Tech. 322 428 (2017)

    Article  Google Scholar 

  6. A Kumar, R Singh, G Seth and R Tripathi J. Nanofluids 7 338 (2018)

    Article  Google Scholar 

  7. A Kumar, R Singh, G S Seth and R Tripathi Int. J. Heat Tech. 36 1430 (2018)

    Article  Google Scholar 

  8. A Kumar, R Singh and R Tripathi Int. Conf. Math. Modell. Sci. Comp. 308 279 (2020)

    Google Scholar 

  9. S Dinarvand, M N Rostami and I Pop Scientific Reports 9 1 (2019)

    ADS  Google Scholar 

  10. M Sheikholeslami, S A Farshad, Z. Ebrahimpour and Z Said J. Clean. Product. 293 126119 (2021)

  11. S Deng, M Li, Y Yang and T Xiao App. Ther. Engg. 196 117314 (2021)

    Article  Google Scholar 

  12. M Sheikholeslami, S A Farshad and Z Said Int. Comm. Heat Mass Transf. 123 (2021) 105190

    Article  Google Scholar 

  13. M Sheikholeslami, M Jafaryar, Z Saidc, A I Alsabery, H Babazadeh and A Shafee App. Ther. Engg. 182 115935 (2021)

    Article  Google Scholar 

  14. Z Said, L S Sundar, A K Tiwari, H M Ali, M Sheikholeslami, E Bellos and H Babar Phy. Rep.https://doi.org/10.1016/j.physrep.2021.07.002(2021)

  15. B Vasu and A K Ray Int. J. Num. Meth. Heat Fluid Flow 29 702 (2018)

    Google Scholar 

  16. A K Ray, B Vasu, O A Beg, R S R Gorla and PVSN Murthy Int J. Num. Meth. Heat and Fluid Flow 29 4277 (2019)

    Article  Google Scholar 

  17. A Kumar, R Singh and M A Sheremet Math. Meth. App. Sci. DOI.org/10.1002/mma.7124 (2021)

  18. T V Karman Z. Angew. Math. Mech. 1 233 (1921)

    Article  Google Scholar 

  19. H Xu Int. Comm. Heat Mass Transf. 108 104275 (2019)

    Article  Google Scholar 

  20. M Zangooee K Hosseinzadeh and D. Ganji Case Studies Therm. Engg. 14 100460 (2019)

    Article  Google Scholar 

  21. J Ahmed, M Khan and L Ahmad Physics Letters A 383 1300 (2019)

    ADS  Google Scholar 

  22. S M R S Naqvi, H M Kim, T Muhammad, F Mallawi and M Z Ullah Int. Comm. Heat Mass Transf. 116 104643 (2020)

    Article  Google Scholar 

  23. G W Sutton and A Sherman Engineering magnetohydrodynamics (Dover Civil and Mechanical Engineering) (2006)

  24. C R Braiding and M Wardle Mont. Not. Royal Astron. Soc. 422 261 (2012)

    Article  ADS  Google Scholar 

  25. H A Attia and A L A Hassan App. Math. Modell. 25 1089 (2001)

    Article  Google Scholar 

  26. M Ahmad, H Zaman and N Rehman Open Phys. 8 422 (2010)

    Google Scholar 

  27. H Zaman App. Math. Phys. 1 31 (2013)

    Google Scholar 

  28. T Hayat, M Rafiq and A Alsaedi Int. J. Therm. Sci. 112 129 (2017)

    Article  Google Scholar 

  29. N Acharya, R Bag and P K Kundu Physica E 111 103 (2019)

  30. A Kumar, R Tripathi, R Singh and G Seth Indian J. Phys. 94 319 (2020)

    Article  ADS  Google Scholar 

  31. A Bejan Second law analysis in heat transfer Energy 5 720 (1980)

    Article  ADS  Google Scholar 

  32. A Arikoglu, I Ozkol and G Komurgoz App. Energy 85 1225 (2008)

    Article  Google Scholar 

  33. M I Khan, A Alsaedi, T Hayat and N B Khan Comp. Meth. Prog. Biom. 179 104973 (2019)

    Article  Google Scholar 

  34. M I Afridi, T A Alkanhal, M Qasim and I Tlili Entropy 21 941 (2019)

    Google Scholar 

  35. X Chen, T Zhao, M Q Zhang and Q Chen Int. J. Heat Mass Transf. 137 1191 (2019)

    Article  Google Scholar 

  36. M I Khan, F Shah, T Hayat and A Alsaedi Physica A 527 121154 (2019)

    Google Scholar 

  37. W Deebani, A Tassaddiq, Z Shah, A Dawar and F Ali Entropy 22 480 (2020)

    Google Scholar 

  38. M W Ahmad, L B McCash, Z Shah and R. Nawaz Coatings 10 610 (2020)

    Article  Google Scholar 

  39. A Kumar, R Tripathi, R Singh and V K Chaurasiya Physica A 551 123972 (2020)

    Google Scholar 

  40. A Kumar, R Tripathi, R Singh and M A Sheremet Indian J. Phys. 95 1423 (2021)

    Article  ADS  Google Scholar 

  41. H Attia Int. Comm. Heat Mass Transf. 28 439 (2001)

  42. D Cimpean, M Sheremet and I Pop Int. Comm. Heat Mass Transf. 116 104627 (2020)

    Article  Google Scholar 

  43. U Farooq, M I Afridi, M Qasim and D Lu Entropy 20 668 (2018)

    Article  Google Scholar 

  44. A Bhattad and J Sarkar J. Therm. Anal. Calorim. 143 767 (2019)

    Article  Google Scholar 

  45. E H Aly and I Pop Powder Tech. 367 192 (2020)

    Article  Google Scholar 

  46. M Awad Int. J. Heat Mass Transf. 94 101 (2016)

    Article  Google Scholar 

  47. H I Andersson, E Korte, R. Meland Fluid Dyn. Res. 28 75 (2001)

    Article  ADS  Google Scholar 

  48. Ming, L Zheng and X Zhang Int. Commun. Heat Mass Tran. 38 280 (2011)

Download references

Acknowledgements

The authors are thankful to the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, for providing the financial support through the research project with no.: ECR/2017/001754, Dated 31-07-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Ray.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ray, R.K. Shape effect of nanoparticles and entropy generation analysis for magnetohydrodynamic flow of \(\left( {A{l_2}{O_3} - Cu/{H_2}O} \right)\) hybrid nanomaterial under the influence of Hall current. Indian J Phys 96, 3817–3830 (2022). https://doi.org/10.1007/s12648-022-02300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02300-8

Keywords

Navigation