Skip to main content
Log in

Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article aims to present the nanofluid flow over an exponentially porous shrinking sheet in the presence of velocity slip and thermal slip. Single-phase fluid model for nanofluid has been used. In this investigation, the effects of silver (Ag) nanoparticle in two different types of base fluids (water and kerosene oil) are investigated. Using similarity transformations, the governing boundary-layer equations and the boundary conditions are reduced to the system of coupled nonlinear ordinary differential equations and then solved numerically with the help of shooting method. Dual solutions exist for some particular range of values of the governing parameters. A stability analysis has been performed to find out the stable solution. A comparison is made between the boundary-layer flow of Ag–water and Ag–kerosene. Impacts of various parameters on velocity, temperature profiles, skin friction coefficient, and Nusselt number are computed and presented in graphs and tables. The fluid velocity and temperature both increase with the increasing nanoparticle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(x,y\) :

Cartesian coordinate system (m)

\(u,v\) :

Velocity components along the \(x,y\) directions, respectively (m/s)

\(\mu_{\text{nf}}\) :

Viscosity of the nanofluid (kg/m s)

\(\mu_{f}\) :

Viscosity of the base fluid (kg/m s)

\(v_{\text{nf}}\) :

Kinematic viscosity of the nanofluid (m2/s)

\(v_{f}\) :

Kinematic viscosity of the base fluid (m2/s)

\((\rho c_{p} )_{\text{nf}}\) :

Specific heat capacitance of the nanofluid (J/kg K)

\((\rho c_{p} )_{f}\) :

Heat capability of foundation liquid (J/kg K)

\((\rho c_{p} )_{s}\) :

Heat capability of solid nanoparticle (J/kg K)

\(\rho_{\text{nf}}\) :

Density of the nanofluid (kg/m3)

\(\rho_{f}\) :

Density of the base fluid (kg/m3)

\(\rho_{s}\) :

Density of the solid nanoparticle (kg/m3)

\(f\) :

Dimensionless velocity fields

\(\kappa_{\text{nf}}\) :

Thermal conductivity of the nanofluid (m2/s)

\(\kappa_{f}\) :

Thermal conductivity of the base fluid (m2/s)

\(\kappa_{s}\) :

Thermal conductivity of the solid nanoparticle (m2/s)

\(T\) :

Temperature K (°C)

\(T_{w}\) :

Variable temperature at the sheet K (°C)

\(T_{\infty }\) :

Free-stream temperature K (°C)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless nanoparticle volume fraction

Pr :

Prandtl number

\(C_{f}\) :

Local skin resistance coefficient

\(Nu_{x}\) :

Local Nusselt number

\(Sh_{x}\) :

Local Sherwood number

References

  1. Miklavčič M, Wang CY (2006) Viscous flow due a shrinking sheet. Q Appl Math 64:283–290

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang T, Zhang J (2009) Closed-form exact solution of MHD viscous flow over a shrinking sheet. Commun Nonlinear Sci Numer Simul 14:2853–2857

    Article  MATH  Google Scholar 

  3. Fang TG, Zhang J, Yao SS (2009) Viscous flow over an unsteady shrinking sheet with mass transfer. Chin Phys Lett 26(1):014703

    Article  Google Scholar 

  4. Hayat T, Hussain M, Hendi AA, Nadeem S (2012) MHD stagnation point flow towards a heated shrinking surface subjected to heat generation/absorption. Appl Math Mech Engl Ed 33(5):631–648

    Article  MathSciNet  MATH  Google Scholar 

  5. Navier CLMH (1823) Mémoire sur les lois du mouvement des fluids. Mem Acad R Sci Inst Fr 6:389–440

    Google Scholar 

  6. Fang T, Yao S, Zhang J, Aziz A (2010) Viscous flow over a shrinking sheet with a second order slip flow model. Commun Nonlinear Sci Numer Simul 15:1831–1842

    Article  MathSciNet  MATH  Google Scholar 

  7. Das K (2012) Slip effects on heat and mass transfer in MHD micropolar fluid flow over an inclined plate with thermal radiation and chemical reaction. Int J Numer Methods Fluids 70:96–113

    Article  MathSciNet  MATH  Google Scholar 

  8. Noghrehabadi A, Saffarian MR, Pourrajab R, Ghalambaz M (2013) Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J Mech Sci Technol 27(3):927–937

    Article  Google Scholar 

  9. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the ASME International Mechanical Engineering Congress and Exposition (San Francisco, USA, ASME, FED, 231/MD), vol 66, pp 99–105

  10. Kuznetsov AV, Nield DA (2010) Natural convective boundary layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  11. Nazar R, Jaradat M, Arifin NM, Pop I (2011) Stagnation point flow past a shrinking sheet in a nanofluid. Cent Eur J Phys 9(5):1195–1202

    Google Scholar 

  12. Bachok N, Ishak A, Pop I (2012) Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. Int J Heat Mass Transf 55:2102–2109

    Article  Google Scholar 

  13. Nadeem S, Haq RU, Khan ZH (2014) Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng J 53:219–224

    Article  Google Scholar 

  14. Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B 457:40–47

    Article  Google Scholar 

  15. Khan U, Ahmed N, Asadullah M, Mohyud-Din ST (2015) Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu water and Cu-kerosene nanofluids. Propuls Power Res 4:40–49

    Article  Google Scholar 

  16. Haq RU, Noor NFM, Khan ZH (2016) Numerical simulation of water based magnetite nanoparticles between two parallel disks. Adv Powder Technol 27:1568–1575

    Article  Google Scholar 

  17. Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524

    Article  Google Scholar 

  18. Haq RU, Rajotia D, Noor NFM (2016) Thermophysical effects of water driven copper nanoparticles on MHD axi-symmetric permeable shrinking sheet: dual-nature study. Eur Phys J Plus 39:1–12

    Google Scholar 

  19. Das K (2014) Nanofluid flow over a shrinking sheet with surface slip. Microfluidics Nanofluidics 16:391–401. https://doi.org/10.1007/s10404-013-1216-7

    Article  Google Scholar 

  20. Ghadikolaei SS, Yassari M, Sadeghi H, Hosseinzadeh Kh, Ganji DD (2017) Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol 322:428–438

    Article  Google Scholar 

  21. Ghadikolaei SS, Hosseinzadeh Kh, Yassari M, Sadeghi H, Ganji DD (2017) Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet. J Mol Liq 244:374–389

    Article  Google Scholar 

  22. Hosseinzadeh K, Jafarian Amiri A, Saedi Ardahaie S, Ganji DD (2017) Effect of variable Lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method. Case Stud Therm Eng 10:595–610

    Article  Google Scholar 

  23. Ghadikolaei SS, Hosseinzadeh Kh, Ganji DD (2018) Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2–CuO) over rotating cone with considering nanoparticles shape factor. J Mol Liq 272:226–236

    Article  Google Scholar 

  24. Ghadikolaei SS, Hosseinzadeh Kh, Ganji DD (2018) Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and joule heating effect. Powder Technol 340:389–399

    Article  Google Scholar 

  25. Ghadikolaei SS, Hosseinzadeh Kh, Ganji DD (2018) MHD radiative boundary layer analysis of micropolar dusty fluid with graphene oxide (Go)-engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect. Powder Technol 338:425–437

    Article  Google Scholar 

  26. Ghadikolaei SS, Hosseinzadeh Kh, Hatami M, Ganji DD (2018) MHD boundary layer analysis for micropolar dusty fluid containing hybrid nanoparticles (Cu–Al2O3) over a porous medium. J Mol Liq 268:813–823

    Article  Google Scholar 

  27. Ghadikolaei SS, Hosseinzadeh Kh, Ganji DD (2018) Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol–water) suspended by hybrid nanoparticle (Fe3O4–Ag) dependent on shape factor. J Mol Liq 262:376–388

    Article  Google Scholar 

  28. Hosseinzadeh Kh, Afsharpanah F, Zamani S, Gholinia M, Ganji DD (2018) A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Therm Eng 12:228–236

    Article  Google Scholar 

  29. Gholinia M, Gholinia S, Hosseinzadeh Kh, Ganji DD (2018) Investigation on ethylene glycol nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. Results Phys 9:1525–1533

    Article  Google Scholar 

  30. Ghadikolaei SS, Hosseinzadeh Kh, Hatami M, Ganji DD, Armin M (2018) Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J Mol Liq 263:10–21

    Article  Google Scholar 

  31. Koca HD, Doganay S, Turgut A (2017) Thermal characteristics and performance of Ag-water nanofluid: application to natural circulation loops. Energy Convers Manag 135:9–20

    Article  Google Scholar 

  32. Bandarra Filho EP, Mendoza OSH, Beicker CLL, Menezes A, Wen D (2014) Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manag 84:261–267

    Article  Google Scholar 

  33. Li D, Xie W, Fang W (2011) Preparation and properties of copper-oil-based nanofluids. Nanoscale Res Lett 6:373–379

    Article  Google Scholar 

  34. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018

    Article  MATH  Google Scholar 

  35. Das Kalidas (2014) Cu-water nanofluid flow and heat transfer over a shrinking sheet. J Mech Sci Technol 28(12):5089–5094

    Article  Google Scholar 

  36. Hussain ST, Nadeem S, Haq RU (2014) Model-based analysis of micropolar nanofluid flow over a stretching surface. Eur Phys J Plus 129:167

    Article  Google Scholar 

  37. Bhattacharyya K (2011) Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chin Phys Lett 28(7) Article ID 074701

    Article  Google Scholar 

  38. Hafidzuddin EH, Nazar R, Arifin NM, Pop I (2015) Numerical solutions of boundary layer flow over an exponentially stretching/shrinking sheet with generalized slip velocity. World Acad Sci Eng Technol Int J Math Comput Phys Electr Comput Eng 9(4):244–249

    Google Scholar 

  39. Weidman PD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44:730–737

    Article  MATH  Google Scholar 

  40. Mahapatra TR, Nandy SK (2011) Stability analysis of dual solutions in stagnation-point flow and heat transfer over a Power-law shrinking surface. Int J Nonlinear Sci 12:86–94

    MathSciNet  MATH  Google Scholar 

  41. Aurangzaib MK, Bhattacharyya K, Shafie S (2016) Multiple solutions of an unsteady stagnation-point flow with melting heat transfer in a Darcy-Brinkman porous medium. Nonlinear Eng 5(2):99–106

    Google Scholar 

  42. Jánský J, Kundrát P (2009) The stability analysis of a discretized pantograph equation. Math Bohem 385–394, ISSN:08627959

  43. Otřísal P, Florus S, Barsan G, Mosteanu D (2018) Employment of simulants for testing constructive materials designed for body surface isolative protection in relation to chemical warfare agents. Revista De Chimie, 69(2):300–304. ISSN: 0034-7752

    Article  Google Scholar 

  44. Hafidzuddin EH, Nazar R, Arifin NM, Pop I (2016) Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J Appl Fluid Mech 9(4):2025–2036

    Google Scholar 

  45. Ghosh S, Mukhopadhyay S (2017) Viscous flow due to an exponentially shrinking permeable sheet in nanofluid in presence of slip. Int J Comput Methods Eng Sci Mech 18:309–317

    Article  MathSciNet  Google Scholar 

  46. Naganthran K, Nazar R, Pop I (2017) Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid. Int J Mech Sci 131:663–671. https://doi.org/10.1016/j.ijmecsci.2017.07.029

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are indeed due to the learned reviewers for their constructive suggestions which helped a lot for the improvement of the quality of the paper. S. Ghosh (SRF, CSIR) is thankful to CSIR, New Delhi, India, for the financial assistance. S. Mukhopadhyay is thankful to SERB, New Delhi, India, for financial support received through Young Scientist Project (YSS/2014/000681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mukhopadhyay.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Mukhopadhyay, S. Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip. Neural Comput & Applic 32, 7201–7211 (2020). https://doi.org/10.1007/s00521-019-04221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04221-w

Keywords

Navigation