Skip to main content
Log in

Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The sensitivity analysis of the magnetohydrodynamic thermal Marangoni convection of ethylene glycol (EG)-based titania (TiO2) nanoliquid is carried out by considering the effect of nanoparticle aggregation. The rate of heat transfer is explored by utilizing response surface methodology and estimating the sensitivity of the heat transfer rate toward the effective parameters: radiation parameter (1 ≤ R ≤ 3), magnetic parameter (1 ≤ M ≤ 3) and nanoparticle volume fraction \((1\% \le \phi \le 5\%\)). The heat transfer phenomenon is scrutinized with thermal radiation and variable temperature at the surface. The effective thermal conductivity and viscosity with aggregation are modeled by using the Maxwell–Bruggeman and Krieger–Dougherty models. The governing equations are solved by using the apposite similarity transformations. It is found that when the effect of aggregation is considered, the velocity profile is lower. A positive sensitivity of the Nusselt number toward thermal radiation is observed. Further, a negative sensitivity of the heat transfer rate is observed toward the magnetic field and nanoparticle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

u, v :

Fluid velocity in x and y directions (m s−1)

T :

Temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

k :

Thermal conductivity (W m−1 K−1)

c p :

Effective specific heat coefficient of fluid (J kg−1 K−1)

B :

Variable magnetic field

B 0 :

Uniform magnetic field (T)

A :

Positive dimensional constant

k R :

Rosseland mean absorption coefficient (m−1)

q r :

Radiative heat flux (W m−2)

n :

Exponent of temperature variation

Nux :

Reduced Nusselt number

f :

Dimensionless stream function

\(L,\zeta_{1} , \zeta_{2}\) :

Constants

k a :

Thermal conductivity of the aggregates (W m−1 K−1)

D :

Fractal index

r a, r p :

Radii of aggregates and nanoparticles (m)

R :

Thermal radiation parameter

M :

Magnetic parameter

Prf :

Prandtl number

\(\rho\) :

Density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\sigma_{\text{e}}\) :

Electrical conductivity (S m−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\phi\) :

Nanoparticle volume fraction

\(\sigma\) :

Surface tension (N m−1)

\(\sigma_{0}\) :

Surface tension at the temperature \(T_{\infty }\) (N m−1)

\(\sigma_{\text{sb}}\) :

Stefan–Boltzmann constant

\(\theta\) :

Dimensionless temperature

\(\psi\) :

Stream function

\(\eta\) :

Similarity variable

\(\beta_{\text{i}}\) :

Regression coefficients

\(\phi_{\text{m}}\) :

Maximum volume fraction of nanoparticles

\(\phi_{\text{a}}\) :

Volume fraction of nanoparticle aggregates

\(\left[ \eta \right]\) :

Einstein coefficient

f:

Base fluid

nf:

Nanoliquid

S:

Nanoparticle

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. J Chem Eng Data. 1995;8(3):281–5.

    Google Scholar 

  2. Chen H, Ding Y, He Y, Tan C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett. 2007. https://doi.org/10.1016/j.cplett.2007.07.046.

    Article  Google Scholar 

  3. Shah Z, Ullah A, Bonyah E, Ayaz M, Islam S, Khan I. Hall effect on titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface. AIP Adv. 2019. https://doi.org/10.1063/1.5099435.

    Article  Google Scholar 

  4. Mebarek-Oudina F. Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf Asian Res. 2019. https://doi.org/10.1002/htj.21375.

    Article  Google Scholar 

  5. Hosseinzadeh K, Afsharpanah F, Zamani S, Gholinia M, Ganji DD. A numerical investigation on ethylene glycol–titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Therm Eng. 2018. https://doi.org/10.1016/j.csite.2018.04.008.

    Article  Google Scholar 

  6. Siddiqui AA, Sheikholeslami M. TiO2–water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity. Appl Math Mech. 2018. https://doi.org/10.1007/s10483-018-2359-6.

    Article  Google Scholar 

  7. Danish M, Yahya SM, Saha BB. Modelling and optimization of thermophysical properties of aqueous titania nanofluid using response surface methodology. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08673-z.

    Article  Google Scholar 

  8. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Investigation on ethylene glycol–water mixture fluid suspend by hybrid nanoparticles (TiO2–CuO) over rotating cone with considering nanoparticles shape factor. J Mol. 2018. https://doi.org/10.1016/j.molliq.2018.09.084.

    Article  Google Scholar 

  9. Ganesh NV, Vishnu Ganesh N, Al-Mdallal QM, Al Fahel S, Dadoa S. Riga—plate flow of γ Al2O3-water/ethylene glycol with effective Prandtl number impacts. Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e01651.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang B-X, Zhou L-P, Peng X-F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf. 2003. https://doi.org/10.1016/s0017-9310(03)00016-4.

    Article  Google Scholar 

  11. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013. https://doi.org/10.1016/j.ijthermalsci.2013.04.013.

    Article  Google Scholar 

  12. Heris SZ, Zeinali Heris S, Razbani MA, Estellé P, Mahian O. Rheological behavior of zinc-oxide nanolubricants. J Disper Sci Technol. 2015. https://doi.org/10.1080/01932691.2014.945595.

    Article  Google Scholar 

  13. Wolthers W, Duits MHG, van den Ende D, Mellema J. Shear history dependence of the viscosity of aggregated colloidal dispersions. J Rheol. 1996. https://doi.org/10.1122/1.550783.

    Article  Google Scholar 

  14. Benos LT, Th. Benos L, Karvelas EG, Sarris IE. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm Sci Eng Prog. 2019. https://doi.org/10.1016/j.tsep.2019.04.007.

    Article  Google Scholar 

  15. Ellahi R, Hassan M, Zeeshan A. Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pac J Chem Eng. 2016. https://doi.org/10.1002/apj.1954.

    Article  Google Scholar 

  16. Kolsi L, Oztop H, Ghachem K, Almeshaal M, Mohammed H, Babazadeh H, et al. Numerical study of periodic magnetic field effect on 3D natural convection of MWCNT-water/nanofluid with consideration of aggregation. Processes. 2019. https://doi.org/10.3390/pr7120957.

    Article  Google Scholar 

  17. Napolitano LG, Golia C. Coupled marangoni boundary layers. Acta Astronaut. 1981. https://doi.org/10.1016/0094-5765(81)90096-5.

    Article  Google Scholar 

  18. Golia C, Viviani A. Non isobaric boundary layers related to Marangoni flows. Meccanica. 1986. https://doi.org/10.1007/bf01556486.

    Article  Google Scholar 

  19. Chamkha AJ, Pop I, Takhar HS. Marangoni mixed convection boundary layer flow. Meccanica. 2006. https://doi.org/10.1007/s11012-005-3352-y.

    Article  Google Scholar 

  20. Lin Y, Li B, Zheng L, Chen G. Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 2016. https://doi.org/10.1016/j.powtec.2016.06.029.

    Article  Google Scholar 

  21. Sheikholeslami M, Ganji DD. Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer. Int J Hydrog Energy. 2017. https://doi.org/10.1016/j.ijhydene.2016.09.121.

    Article  Google Scholar 

  22. Ellahi R, Zeeshan A, Hassan M. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int J Numer Method Heat. 2016. https://doi.org/10.1108/hff-11-2014-0348.

    Article  Google Scholar 

  23. Mahanthesh B, Gireesha BJ, PrasannaKumara BC, Shashikumar NS. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nucl Eng Technol. 2017. https://doi.org/10.1016/j.net.2017.08.015.

    Article  Google Scholar 

  24. Aly EH, Ebaid A. Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium. J Mol. 2016. https://doi.org/10.1016/j.molliq.2015.12.108.

    Article  Google Scholar 

  25. Ganesh NV, Vishnu Ganesh N, Kameswaran PK, Al-Mdallal QM, Abdul Hakeem AK, Ganga B. Non-linear thermal radiative Marangoni boundary layer flow of gamma Al2O3 nanofluids past a stretching sheet. J Nanofluids. 2018. https://doi.org/10.1166/jon.2018.1510.

    Article  Google Scholar 

  26. Sheremet MA, Pop I. Marangoni natural convection in a cubical cavity filled with a nanofluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7069-2.

    Article  Google Scholar 

  27. Ganesh NV, Vishnu Ganesh N, Chamkha AJ, Al-Mdallal QM, Kameswaran PK. Magneto-Marangoni nano-boundary layer flow of water and ethylene glycol based γ Al2O3 nanofluids with non-linear thermal radiation effects. Case Stud Therm Eng. 2018. https://doi.org/10.1016/j.csite.2018.04.019.

    Article  Google Scholar 

  28. Darbari B, Rashidi S, Esfahani JA. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy. 2016. https://doi.org/10.3390/e18020052.

    Article  Google Scholar 

  29. Mackolil J, Mahanthesh B. Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects. Eur Phys J Plus. 2019. https://doi.org/10.1140/epjp/i2019-12949-6.

    Article  Google Scholar 

  30. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7652-6.

    Article  Google Scholar 

  31. Vahedi SM, Pordanjani AH, Raisi A, Chamkha AJ. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. Eur Phys J Plus. 2019. https://doi.org/10.1140/epjp/i2019-12537-x.

    Article  Google Scholar 

  32. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017. https://doi.org/10.1016/j.powtec.2017.02.065.

    Article  Google Scholar 

  33. Hayat T, Ijaz Khan M, Farooq M, Alsaedi A, Yasmeen T. Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.115.

    Article  Google Scholar 

  34. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.041.

    Article  Google Scholar 

  35. Kierzenka J, Shampine LF. A BVP solver based on residual control and the Maltab PSE. ACM Trans Math Softw. 2001. https://doi.org/10.1145/502800.502801.

    Article  Google Scholar 

  36. Arifin NM, Nazar R, Pop I. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water based fluid. Meccanica. 2011. https://doi.org/10.1007/s11012-010-9344-6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management of CHRIST (Deemed to be University), Bengaluru, India, for their constant support to accomplish this research work. We also thank the Editor and the anonymous reviewers for their constructive suggestions to improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahanthesh.

Ethics declarations

Conflict of interest

The authors report no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackolil, J., Mahanthesh, B. Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. J Therm Anal Calorim 143, 2085–2098 (2021). https://doi.org/10.1007/s10973-020-09642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09642-7

Keywords

Navigation