Skip to main content
Log in

Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the important problems in the field of heat transfer is the investigation of natural convection heat transfer in the cavities. The next step is study of entropy generation. The object of the present work is investigation of the entropy generation in a semi-annulus cavity filled with Cu–water nanofluid. The outer and inner semicircular walls are kept at constant temperatures, whereas the two other walls are insulated. Firstly, the governing equations (i.e., continuity, momentum and energy equations) are numerically solved by the control volume-based finite element method, and then, the entropy generation number is calculated. The effects of the Rayleigh number, the nanoparticle volume fraction, the particle shape and the angle of turn for the enclosure on the entropy generation number are investigated. Also, a new criterion for the evaluation of cavity thermal performance is defined that is called ECOP. The results were compared with those of the literature, and good agreement was observed. The results show that the Nusselt number and entropy generation number increase as the Rayleigh number and the nanoparticle volume fraction increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–103.

    CAS  Google Scholar 

  2. Leong KY, Saidur R, Kazi SN, Mamun AH. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng. 2010;30:2685–92.

    Article  CAS  Google Scholar 

  3. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  4. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39:293–8.

    Article  CAS  Google Scholar 

  5. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  6. Ilis GG. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf. 2008;35:696–703.

    Article  CAS  Google Scholar 

  7. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35:657–65.

    Article  CAS  Google Scholar 

  8. Abouali O, Falahatpisheh A. Numerical investigation of natural convection of Al2O3 nanofluid in vertical annuli. Heat Mass Transf. 2009;46:15–23.

    Article  CAS  Google Scholar 

  9. Ghasemi B, Aminossadati SM. Natural convection heat transfer in an inclined enclosure filled with a water–CuO nanofluid. Numer Heat Transf Part A Appl. 2009;55:807–23.

    Article  CAS  Google Scholar 

  10. Ghasemi B, Aminossadati SM. Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int J Therm Sci. 2010;49:931–40.

    Article  CAS  Google Scholar 

  11. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49:479–91.

    Article  CAS  Google Scholar 

  12. Saleh H, Roslan R, Hashim I. Natural convection heat transfer in a nanofluid filled trapezoidal enclosure. Int J Heat Mass Transf. 2011;54:194–201.

    Article  CAS  Google Scholar 

  13. Roslan R, Saleh H, Hashim I. Buoyancy-driven heat transfer in nanofluid filled trapezoidal enclosure with variable thermal conductivity and viscosity. Numer Heat Transf A. 2011;60:867–82.

    Article  Google Scholar 

  14. Bararnia H, Hooman K, Ganji DD. Natural convection in a nanofluid filled portion cavity; the lattice-Boltzmann method. Numer Heat Transf Part A. 2011;59:487–502.

    Article  Google Scholar 

  15. Alinia M, Ganji DD, Gorji-Bandpy M. Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model. Int Commun Heat Mass Transf. 2011;38:1428–35.

    Article  CAS  Google Scholar 

  16. Xu X, Yu Z-T, Hu Y-C, Fan L-W, Cen K-F. A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus. Int J Heat Mass Transf. 2012;55:1141–8.

    Article  Google Scholar 

  17. Nasrin R, Parvin S. Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–Cu nanofluid. Int Commun Heat Mass Transf. 2012;39:270–4.

    Article  CAS  Google Scholar 

  18. Arefmanesh A, Amini M, Mahmoodi M, Najafi M. Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. Eur J Mech B Fluids. 2012;33:95–104.

    Article  Google Scholar 

  19. Cho CC, Chen CL, Chen CK. Natural convection heat transfer performance in complex-wavy-wall enclosed cavity filled with nanofluid. Int J Therm Sci. 2012;60:255–63.

    Article  CAS  Google Scholar 

  20. Esmaeilpoura M, Abdollahzadeh M. Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci. 2012;52:127–36.

    Article  Google Scholar 

  21. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int Commun Heat Mass Transf. 2012;39:565–74.

    Article  CAS  Google Scholar 

  22. Mansour MA, Bakier MAY. Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid. Int Commun Heat Mass Transf. 2013;44:108–15.

    Article  CAS  Google Scholar 

  23. Rezaiguia I, Kadja M, Mebrouk R, Belghar N. Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid. Heat Mass Transf. 2013;49:1319–31.

    Article  CAS  Google Scholar 

  24. Shavik SM, Hassan N, Morshed AKMM, Islam Q. Natural convection and entropy generation in a square inclined cavity with differentially heated vertical walls. In: 10th International conference on mechanical engineering, ICME 2013, procedia engineering, vol. 90; 2014, pp. 557–562.

    Article  Google Scholar 

  25. Saidi M, Karimi G. Free convection cooling in modified L-shape enclosures using copper–water nanofluid. Energy. 2014;70:251–71.

    Article  CAS  Google Scholar 

  26. Cho CC, Chiu CH, Lai CY. Natural convection and entropy generation of Al2O3–water nanofluid in an inclined wavy-wall cavity. Int J Heat Mass Transf. 2016;97:511–20.

    Article  CAS  Google Scholar 

  27. Sheremet MA, Oztop HF, Pop I, Abu-Hamdeh N. Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das’ model. Entropy. 2015;18(1):9.

    Article  Google Scholar 

  28. Bondareva Nadezhda S, Sheremet Mikhail A, Oztop Hakan F, Abu-Hamdeh Nidal. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28(1):244–55.

    Article  CAS  Google Scholar 

  29. Sheremet M, Pop I, Öztop HF, Abu-Hamdeh N. Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: entropy generation analysis. Int J Numer Methods Heat Fluid Flow. 2017;27(4):958–80.

    Article  Google Scholar 

  30. Sivaraj C, Sheremet MA. MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci. 2018;149:326–37.

    Article  Google Scholar 

  31. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84. https://doi.org/10.1007/s10973-018-7396-3.

    Article  CAS  Google Scholar 

  32. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7520-4.

    Article  Google Scholar 

  33. Das Debayan, Roy Monisha, Basak Tanmay. Studies on natural convection within enclosures of various (non-square) shapes—a review. Int J Heat Mass Transf. 2016;106:356–406.

    Article  Google Scholar 

  34. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transf. 2019;132:473–83.

    Article  CAS  Google Scholar 

  35. Dogonchi AS, Chamkha AJ, Seyyedi SM, Ganji DD. Radiative nanofluid flow and heat transfer between parallel disks with penetrable and stretchable walls considering Cattaneo–Christov heat flux model. Heat Transf Asian Res. 2018;47:735–53. https://doi.org/10.1002/htj.21339.

    Article  Google Scholar 

  36. Dogonchi AS, Sheremet MA, Pop I, Ganji DD. MHD natural convection of Cu/H2O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int J Numer Methods Heat Fluid Flow. 2018. https://doi.org/10.1108/HFF-04-2018-0160.

    Article  Google Scholar 

  37. Seyyedi SM, Sahebi N, Dogonchi AS, Hashemi-Tilehnoee M. Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position. Int J Heat Mass Transf. 2019;130:1343–57. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.030.

    Article  Google Scholar 

  38. Chamkha AJ, Dogonchi AS, Ganji DD. Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci. 2018;8:2396.

    Article  Google Scholar 

  39. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  40. Dincer I, Rosen MA. Energy, environment and sustainable development. Amsterdam: Elsevier Publishing; 2007.

    Google Scholar 

  41. Woods LC. The thermodynamics of fluid systems. Oxford: Oxford University Press; 1975.

    Google Scholar 

  42. Magherbi M, Abbasi H, Brahim AB. Entropy generation at the onset of natural convection. Int J Heat Mass Transf. 2003;46:3441–50.

    Article  Google Scholar 

  43. Seyyedi SM, Rajaee-Zadeh T, Hashemi-Tilehnoee M. A new model to measure the performance of the fins based on exergy analysis. Therm Sci. 2019;23:507–24. https://doi.org/10.2298/TSCI161217228S.

    Article  Google Scholar 

  44. Saabas HJ, Baliga BR. Co-located equal-order control-volume finite-element method for multidimensional, incompressible. Fluid flow-part I: formulation. Numer Heat Transf. 1994;26(4):381–407.

    Article  CAS  Google Scholar 

  45. De Vahl Davis G. Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Methods Fluids. 1962;3:249–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Masoud Seyyedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyyedi, S.M., Dogonchi, A.S., Ganji, D.D. et al. Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J Therm Anal Calorim 138, 1607–1621 (2019). https://doi.org/10.1007/s10973-019-08130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08130-x

Keywords

Navigation