Skip to main content

Advertisement

Log in

Salt stress responses and alleviation strategies in legumes: a review of the current knowledge

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes’ expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes’ response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant’s priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the present study.

References

  • Abd El-Ghany M, Attia M (2020) Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil. Agronomy 10:316. https://doi.org/10.3390/agronomy10030316

    Article  CAS  Google Scholar 

  • Abd-Alla M, Nafady N, Bashandy S, Hassan A (2019) Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 10:100148. https://doi.org/10.1016/j.rhisph.2019.100148

    Article  Google Scholar 

  • Abdel Latef AAH, Tahjib-Ul-Arif M, Rhaman MS (2021) Exogenous auxin-mediated salt stress alleviation in Faba Bean (Vicia faba L.). Agronomy 11:547. https://doi.org/10.3390/agronomy11030547

    Article  CAS  Google Scholar 

  • Abdel-Baki G, Shaddad MAK, Mostafa D, Rafat A-S (2018) The effect of seed presoaking with KNO3 on seed germination, proline, protein pattern, ß-amylase and mineral composition of two faba bean cultivars treated with NaCl. Egypt J Bot 58:445–461. https://doi.org/10.21608/ejbo.2018.3423.1166

    Article  Google Scholar 

  • Abdelhamid M, Mervat ShS, Urs S, Abdel-Kareem ME (2013) Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biol Colomb 18:499–510

    Google Scholar 

  • Abeer H, Abd Allah E, Alqarawi A et al (2014) Alleviation of adverse impact of salinity on Faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013

    Google Scholar 

  • Abeer H, Abd Allah E, Alqarawi A, Egamberdieva D (2015) Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Res Int J 38:579–588

    Google Scholar 

  • Abid G, Muhovski Y, Mingeot D et al (2017) Identification and characterization of two faba bean (Vicia faba L.) WRKY transcription factors and their expression analysis during salt and drought stress. J Agric Sci 155:791–803

    Article  CAS  Google Scholar 

  • Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz J-E et al (2021) Rhizobial exopolysaccharides: genetic regulation of their synthesis and relevance in symbiosis with legumes. Int J Mol Sci 22:6233. https://doi.org/10.3390/ijms22126233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S (2014) Emerging technologies and management of crop stress tolerance: volume 1-biological techniques, Academic Press, Cambridge

    Google Scholar 

  • Ahmad F, Singh A, Kamal A (2017) Ameliorative effect of salicylic acid in salinity stressed Pisum sativum by improving growth parameters, activating photosynthesis and enhancing antioxidant defense system. Biosci Biotech Res Comm 10:481–489

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Ahanger MA et al (2018) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in Faba Bean (Vicia faba L.) seedlings under NaCl toxicity. Russ J Plant Physiol. https://doi.org/10.1134/S1021443718010132

    Article  Google Scholar 

  • Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effects of seed priming on germination and emergence traits of two soybean cultivars under salinity stress. J Basic Appl Sci Res 3:234–241

    CAS  Google Scholar 

  • Al-Farsi SM, Nawaz A, Nadaf SK et al (2020) Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop Pasture Sci 71:411–428

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47. https://doi.org/10.1007/s005720100098

    Article  CAS  Google Scholar 

  • Al-Lawati A, Al-Bahry S, Victor R et al (2016) Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet Mol Res 15:15018299

    Article  CAS  PubMed  Google Scholar 

  • Alsaeedi AH, El-Ramady H, Alshaal T et al (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24:21917–21928

    Article  CAS  Google Scholar 

  • Alqarawi A, Hashem A, Abd_Allah E et al (2014) Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol Hung 65:61–71

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani SM, Alaraidh IA, Khan MA et al (2019a) Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing. Genes 10:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzahrani SM, Alaraidh IA, Migdadi H et al (2019b) Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pak J Bot. https://doi.org/10.30848/PJB2019-3(3)

    Article  Google Scholar 

  • Anaya F, Fghire R, Wahbi S, Loutfi K (2018) Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J Saudi Soc Agric Sci 17:1–8. https://doi.org/10.1016/j.jssas.2015.10.002

    Article  Google Scholar 

  • Andersen S, Rozhon W, Šamaj J et al (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090. https://doi.org/10.1111/j.1365-313X.2006.03025.x

    Article  CAS  Google Scholar 

  • Anwar A, Kim J-K (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. Int J Mol Sci 21:2695. https://doi.org/10.3390/ijms21082695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranega-Bou P, de la Leyva MO, Finiti I et al (2014) Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00488

    Article  PubMed  PubMed Central  Google Scholar 

  • Arriagada O, Cacciuttolo F, Cabeza RA et al (2022) A comprehensive review on chickpea (Cicer arietinum L.) breeding for abiotic stress tolerance and climate change resilience. Int J Mol Sci 23:6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asensio AC, Gil-Monreal M, Pires L et al (2012) Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes. J Plant Physiol 169:1253–1260. https://doi.org/10.1016/j.jplph.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram N (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752. https://doi.org/10.1016/j.biotechadv.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi E, Zahedi M, Razmjoo J (2014) Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Sci Plant Nutr 60:619–629. https://doi.org/10.1080/00380768.2014.936037

    Article  CAS  Google Scholar 

  • Ashraf M, Akbar A, Askari S et al (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore, pp 51–79

    Google Scholar 

  • Assaha D, Ueda A, Saneoka H et al (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509. https://doi.org/10.3389/fphys.2017.00509

    Article  PubMed  PubMed Central  Google Scholar 

  • Atieno J, Li Y, Langridge P et al (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7:1300. https://doi.org/10.1038/s41598-017-01211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atieno J, Colmer TD, Taylor J et al (2021) Novel salinity tolerance loci in chickpea identified in glasshouse and field environments. Front Plant Sci. https://doi.org/10.3389/fpls.2021.667910

    Article  PubMed  PubMed Central  Google Scholar 

  • Awana M, Yadav K, Rani K et al (2019) Insights into salt stress-induced biochemical, molecular and epigenetic regulation of spatial responses in Pigeonpea (Cajanus cajan L.). J Plant Growth Regul 38:1545–1561

    Article  CAS  Google Scholar 

  • Ayra L, Ramírez M, Íñiguez LP et al (2018) The common bean (Phaseolus vulgaris) Basic Leucine Zipper (bZIP) transcription factor family: response to salinity stress in fertilized and symbiotic N2-fixing plants. Agriculture 8:160

    Article  CAS  Google Scholar 

  • Azad M, Alam M, Hamid M (2013) Modification of salt tolerance level in groundnut (Arachis hypogaea L.) through induced mutation. Legume Res Int J 36:224–233

    Google Scholar 

  • Azooz M (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11:343–350

    CAS  Google Scholar 

  • Azooz M, Alzahrani A, Youssef M (2013) The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Aust J Crop Sci 7:2091–2100

    Google Scholar 

  • Bano DA, Singh R, Waza SA, Singh N (2015) Effect of cowpea Bradyrhizobium (RA-5) and Burkholderia cepacia (RRE-5) on growth parameters of pigeonpea under salt stress conditions. J Pure Appl Microbiol 9:2539–2546

    CAS  Google Scholar 

  • Bano DA, Singh RK, Waza SA, Singh NP (2020) Effect of cowpea bradyrhizobium (RA-5) and Burkholderia cepacia (RRE-5) on growth parameters of pigeonpea under salt stress conditions. In: J. Pure Appl. Microbiol. https://microbiologyjournal.org/effect-of-cowpea-bradyrhizobium-ra-5-and-burkholderia-cepacia-rre-5-on-growth-parameters-of-pigeonpea-under-salt-stress-conditions/. Accessed 29 Aug 2021

  • Bao A-K, Wang S-M, Wu G-Q et al (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Bao A, Du B, Touil L et al (2016) Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol J 14:964–975

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D et al (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benidire L, Lahrouni M, El Khalloufi F et al (2017) Effects of Rhizobium leguminosarum inoculation on growth, nitrogen uptake and mineral assimilation in Vicia faba plants under salinity stress. J Agric Sci Technol 19:889–901

    Google Scholar 

  • Benidire L, El Khalloufi F, Oufdou K et al (2020) Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Sci Total Environ 729:139020. https://doi.org/10.1016/j.scitotenv.2020.139020

    Article  CAS  PubMed  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620

    Article  CAS  PubMed  Google Scholar 

  • Betti M, García-Calderón M, Pérez-Delgado CM et al (2012) Glutamine synthetase in legumes: recent advances in enzyme structure and functional genomics. Int J Mol Sci 13:7994–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagat N, Raghav M, Dubey S, Bedi N (2021) Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol 31:1045–1059. https://doi.org/10.4014/jmb.2105.05009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bicakci T, Aksu E, Arslan M (2018) Effect of seed coating on germination, emergence and early seedling growth in Alfalfa (Medicago sativa L.) under salinity conditions. Fresenius Env Bull 27:6978–6984

    CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta BBA-Biomembr 1465:140–151

    Article  CAS  Google Scholar 

  • Bojović B, Đelić G, Topuzović M, Stanković M (2010) Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujev J Sci 32:83–87

    Google Scholar 

  • Boncompagni E, Østerås M, Poggi M, le Rudulier D (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouallègue A, Souissi F, Nouairi I et al (2017) Salicylic acid and hydrogen peroxide pretreatments alleviate salt stress in faba bean (Vicia faba) seeds during germination. Seed Sci Technol 45:675–690

    Google Scholar 

  • Breria CM, Hsieh C-H, Yen T-B et al (2020) A SNP-based genome-wide association study to mine genetic loci associated to salinity tolerance in mungbean (Vigna radiata L.). Genes 11:759. https://doi.org/10.3390/genes11070759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brígido C, Nascimento FX, Duan J et al (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53. https://doi.org/10.1111/1574-6968.12294

    Article  CAS  PubMed  Google Scholar 

  • Bruning B, Rozema J (2013) Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp Bot 92:134–143

    Article  CAS  Google Scholar 

  • Büyük İ, Inal B, Ilhan E et al (2016) Genome-wide identification of salinity responsive HSP70 s in common bean. Mol Biol Rep 43:1251–1266

    Article  PubMed  Google Scholar 

  • Castiglioni P, Bell E, Lund A et al (2018) Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct 2:e00040. https://doi.org/10.1002/pld3.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Wang B, Shi L et al (2010) Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate. J Plant Physiol 167:1152–1156

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Sui X, Fan X et al (2018) Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00652

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao Y, Kang J, Sun Y et al (2009) Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L. Mol Biol Rep 36:2315

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01739

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Li M, Zhang H et al (2019) Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genom 20:1–12

    Article  Google Scholar 

  • Chen S, Zhang N, Zhou G et al (2021) Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol 21:1–15

    Article  CAS  Google Scholar 

  • Coba de la Pena T, Redondo FJ, Manrique E et al (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conforte VP, Echeverria M, Sánchez C et al (2010) Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. J Gen Appl Microbiol 56:331–338. https://doi.org/10.2323/jgam.56.331

    Article  CAS  PubMed  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N fixation and assimilation in Vicia faba. J Exp Bot 45:1483–1488. https://doi.org/10.1093/jxb/45.10.1483

    Article  CAS  Google Scholar 

  • Cordovilla M, Ocaña A, Ligero F, Lluch C (1995) Growth stage response to salinity in simbiosis Vicia faba-Rhizobium leguminosarum bv. viciae. Life Sci Adv 14:105–111

    Google Scholar 

  • Cordovilla MDP, Ligero F, Lluch C (1999) Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7

    Article  Google Scholar 

  • Costa A, Navazio L, Szabo I (2018) The contribution of organelles to plant intracellular Calcium signalling. J Exp Bot. https://doi.org/10.1093/jxb/ery185

    Article  Google Scholar 

  • Dawood M, El-Awadi M (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with metatonin. Acta Biológica Colomb 20:223–235. https://doi.org/10.15446/abc.v20n2.43291

    Article  Google Scholar 

  • De Rossi S, Di Marco G, Bruno L et al (2021) Investigating the drought and salinity effect on the redox components of Sulla Coronaria (L.) Medik. Antioxidants 10:1048

    Article  PubMed Central  Google Scholar 

  • del Pilar CM, Ligero F, Lluch C (1995) Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant Soil 172:289–297

    Article  Google Scholar 

  • Dell’Aversana E, Cirillo V, Van Oosten MJ et al (2021) Ascophyllum nodosum based extracts counteract salinity stress in tomato by remodeling leaf nitrogen metabolism. Plants 10:1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Desheva G, Desheva GN, Stamatov SK (2020) Germination and early seedling growth characteristics of Arachis hypogaea L. under salinity (NaCl) stress. Agric Conspec Sci 85:113–121

    Google Scholar 

  • Dissanayake R, Cogan NOI, Smith KF, Kaur S (2021) Application of genomics to understand salt tolerance in lentil. Genes 12:332. https://doi.org/10.3390/genes12030332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd I, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428. https://doi.org/10.1093/jxb/ers033

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Song Y, Zhao Z et al (2017) The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem Biophys Res Commun 490:225–230

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Liu X, Li D et al (2018) Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS ONE 13:e0204033

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubova L, Šenberga A, Alsiņa I (2015) The effect of double inoculation on the broad bean (Vicia faba L.) yield quality. https://www.semanticscholar.org/paper/THE-EFFECT-OF-DOUBLE-INOCULATION-ON-THE-BROAD-BEANS-Dubova-%C5%A0enberga/f44c75d49a5b09d4c3b86b2e7c90a7eeb88336f7. Accessed 4 Jul 2021

  • Duc G, Agrama H, Bao S et al (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci 34:381–411. https://doi.org/10.1080/07352689.2014.898469

    Article  Google Scholar 

  • Dutta P, Bera A (2014) Effect of NaCl salinity on seed germination and seedling growth of mungbean cultivars. Legume Res Int J 37:161–164

    Article  Google Scholar 

  • Egamberdieva D, Shurigin V, Gopalakrishnan S, Sharma R (2014) Growth and symbiotic performance of chickpea (Cicer arietinum) cultivars under saline soil conditions. J Biol Chem Res 2014:1–10

    Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D et al (2017) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12:100–107. https://doi.org/10.1080/17429145.2017.1294212

    Article  CAS  Google Scholar 

  • El-Awadi M, Sadak M, Dawood MG et al (2017) Amelioration the adverse effects of salinity stress by using γ-radiation in faba bean plants. Bull NRC 41:293–310

    Google Scholar 

  • El-Bastawisy ZM, El-Katony TM, Abd El-Fatah SN (2018) Genotypic variability in salt tolerance of Vicia faba during germination and early seedling growth. J King Saud Univ Sci 30:270–277. https://doi.org/10.1016/j.jksus.2017.04.004

    Article  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2018.12.001

    Article  Google Scholar 

  • El-Serafy RS, El-Sheshtawy A-NA, Atteya AK et al (2021) Seed priming with silicon as a potential to increase salt stress tolerance in Lathyrus odoratus. Plants 10:2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Beattie G (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Devi T, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahmi AI, Nagaty HH, Eissa RA, Hassan MM (2011) Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak J Biol Sci PJBS 14:385–391

    Article  CAS  PubMed  Google Scholar 

  • Farissi M, Bouizgaren A, Faghire M et al (2011) Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39:389–401

    Article  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management A Review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Farooq M, Gogoi N, Hussain M et al (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217. https://doi.org/10.1016/j.plaphy.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O et al (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254. https://doi.org/10.1016/j.crvi.2015.02.001

    Article  PubMed  Google Scholar 

  • Fernández-Pascual M, De Lorenzo C, De Felipe M et al (1996) Possible reasons for relative salt stress tolerance in nodules of white lupin cv. Multolupa. J Exp Bot 47:1709–1716

    Article  Google Scholar 

  • Flowers T, Gaur P, Gowda C et al (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509. https://doi.org/10.1111/j.1365-3040.2009.02051.x

    Article  CAS  PubMed  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356. https://doi.org/10.1007/s11104-016-3007-x

    Article  CAS  Google Scholar 

  • Fotopoulos V, Christou A, Antoniou C, Manganaris GA (2015) REVIEW ARTICLE Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. J Hortic Sci Biotechnol 90:227–234. https://doi.org/10.1080/14620316.2015.11513176

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22. https://doi.org/10.1104/pp.15.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S-Q, Chen M, Xu Z-S et al (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25:165–180

    Article  PubMed  Google Scholar 

  • Garg N, Singla R (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Braz J Plant Physiol 16:137–146

    Article  Google Scholar 

  • Geilfus C-M (2018) Chloride: from nutrient to toxicant. Plant Cell Physiol 59:877–886

    Article  CAS  PubMed  Google Scholar 

  • Geilfus CM, Niehaus K, Gödde V et al (2015) Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2015.04.008

    Article  PubMed  Google Scholar 

  • Ghanbari M, Mokhtassi-Bidgoli A, Mansour Ghanaei-Pashaki K, Karamniya S (2020) Germination characteristics and enzyme activity of mung bean (Vigna radiata) in response to methyl jasmonate and salinity treatments. Iran J Seed Res 7:83–97

    Article  Google Scholar 

  • Glick B (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:e963401. https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  • Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. https://doi.org/10.1080/07352680701572966

    Article  CAS  Google Scholar 

  • Gnanasambandam A, Paull J, Torres A et al (2012) Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agronomy 2:132–166. https://doi.org/10.3390/agronomy2030132

    Article  Google Scholar 

  • Guan H, Liu X, Niu F et al (2019) OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front Plant Sci 10:890

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajri R, Ouhibi C, Mechri M et al (2018) Salinity and water deficit effects on seed germination and recovery of lotus populations from northern Tunisia. Pak J Bot 50:2085–2090

    CAS  Google Scholar 

  • Hanafy M, El-Banna A, Schumacher H et al (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep 32:663–674. https://doi.org/10.1007/s00299-013-1401-x

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M et al (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Araújo S, Gill SS (2020) The plant family fabaceae. Springer, Berlin

    Book  Google Scholar 

  • Hashem A, Abd Allah E, Alqarawi A et al (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013

    Google Scholar 

  • Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 4:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan MA, Pacurar A, López-Gresa MP et al (2016) Effects of salt stress on three ecologically distinct plantago species. PLoS ONE. https://doi.org/10.1371/journal.pone.0160236

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassanein R, El-Kazzaz A, Hashem H et al (2019) Transformation with the sodium/proton antiporter’AtNHX1’enhances salt tolerance in faba bean (’Vicia faba’ L.). Plant Omics 12:48

    Google Scholar 

  • Ha-Tran DM, Nguyen TTM, Hung S-H et al (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci 22:3154. https://doi.org/10.3390/ijms22063154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Fu J, Yu C et al (2015) Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J Exp Bot 66:6877–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellal FA, Abdelhameid M, Abo-Basha DM, Zewainy RM (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on Faba bean (Vica faba L.). J Appl Sci Res 2012:4428–4433

    Google Scholar 

  • Hernández-Lucero E, Rodríguez-Hernández AA, Ortega-Amaro MA, Jiménez-Bremont JF (2014) Differential expression of genes for tolerance to salt stress in common bean (Phaseolus vulgaris L.). Plant Mol Biol Report 32:318–327

    Article  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9:e92598

    Article  PubMed  PubMed Central  Google Scholar 

  • Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65:90–96

    Article  Google Scholar 

  • Hoang XLT, Chuong NN, Hoa TTK et al (2021) The drought-mediated soybean GmNAC085 functions as a positive regulator of plant response to salinity. Int J Mol Sci 22:8986. https://doi.org/10.3390/ijms22168986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MR, Pritchard J, Ford-Lloyd BV (2016) Qualitative and quantitative variation in the mechanisms of salinity tolerance determined by multivariate assessment of diverse rice (Oryza sativa L.) genotypes. Plant Genet Resour 14:91

    Article  CAS  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  • Ilangumaran G, Schwinghamer TD, Smith DL (2021) Rhizobacteria from root nodules of an indigenous legume enhance salinity stress tolerance in soybean. Front Sustain Food Syst 4:308. https://doi.org/10.3389/fsufs.2020.617978

    Article  Google Scholar 

  • Irshad A, Rehman RNU, Abrar MM et al (2021) Contribution of rhizobium-legume symbiosis in salt stress tolerance in medicago truncatula evaluated through photosynthesis, antioxidant enzymes, and compatible solutes accumulation. Sustainability 13:3369. https://doi.org/10.3390/su13063369

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MM, Haque MS, Sarwar AG (2019) Salt tolerance of cowpea genotypes during seed germination and seedling growth. J Bangl Agric Univ 17:39–44

    Article  Google Scholar 

  • Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG (2010) Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J Cell Mol Biol 64:740–752. https://doi.org/10.1111/j.1365-313X.2010.04365.x

    Article  CAS  Google Scholar 

  • Jaarsma R, Vries R, Boer A (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) Cultivars. PLoS ONE 8:e60183. https://doi.org/10.1371/journal.pone.0060183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Skorupska A (2007) The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. Mol Plant-Microbe Interact MPMI 20:867–881. https://doi.org/10.1094/MPMI-20-7-0867

    Article  CAS  PubMed  Google Scholar 

  • Janczarek M, Kutkowska J, Piersiak T, Skorupska A (2010) Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10:284. https://doi.org/10.1186/1471-2180-10-284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jatan R, Chauhan PS, Lata C (2019) Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 111:509–519

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8:e71136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida SK (2019) Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep 38:255–277

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G et al (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Kaashyap M, Ford R, Kudapa H et al (2018) Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep 8:1–19

    Article  CAS  Google Scholar 

  • Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158

    Article  CAS  PubMed  Google Scholar 

  • Kadian N, Yadav K, Badda N, Aggarwal A (2013) AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. under salt stress. Russ Agric Sci 39:321–329

    Article  Google Scholar 

  • Kang S, Waqas M, Khan A, Lee I (2014a) Plant-growth-promoting rhizobacteria: potential candidates for gibberellins production and crop growth promotion. Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 1–19

    Google Scholar 

  • Kang S-M, Radhakrishnan R, Khan AL et al (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag 62:37–66. https://doi.org/10.1016/S0378-3774(03)00005-2

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78. https://doi.org/10.1016/j.agee.2016.06.031

    Article  CAS  Google Scholar 

  • Kaundal R, Duhan N, Acharya BR et al (2021) Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Sci Rep 11:5210. https://doi.org/10.1038/s41598-021-84461-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavarzi MHB (2011) Effect of salt stress on germination and early seedling growth of savory (Satureja hortensis). Aust J Basic Appl Sci 5:3274–3279

    Google Scholar 

  • Ketehouli T, Idrice Carther KF, Noman M et al (2019) Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy 9:687

    Article  CAS  Google Scholar 

  • Khalil SK, Mexal JG, Murray LW (2001) Germination of soybean seed primed in aerated solution of polyethylene glycol 8000. OnLine J Biol Sci 1:105–107

    Article  Google Scholar 

  • Khan HA, Siddique KHM, Colmer TD (2017) Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. J Exp Bot 68:2001–2011

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H et al (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Asaf S, Khan AL et al (2019) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. BioMed Res Int 2019:e9530963. https://doi.org/10.1155/2019/9530963

    Article  CAS  Google Scholar 

  • Khandal H, Parween S, Roy R et al (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  • Khazaei H, O’Sullivan D, Stoddard F et al (2020) Recent advances in Faba Bean genetic and genomic tools for crop improvement. Legume Sci. https://doi.org/10.2094/preprints202012.0372.v1

    Article  Google Scholar 

  • Kheloufi A, Chorfi A, Mansouri L-M (2017) Germination kinetics in two Acacia karroo hayne ecotypes under salinity conditions. Open Access Libr J 4:1–11

    Google Scholar 

  • Kim JH, Kim WT, Kang BG (2001) IAA and N6-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls. Plant Cell Physiol 42:1056–1061. https://doi.org/10.1093/pcp/pce133

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang J, Cho D et al (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Rodríguez-Kábana R, Zehnder GW et al (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21. https://doi.org/10.1071/AP99003

    Article  Google Scholar 

  • Kohli D, Joshi G, Deokar AA et al (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS ONE 9:e108851

    Article  PubMed  PubMed Central  Google Scholar 

  • Kołodziejek J (2018) Seed germination responses to some environmental factors in the red feather (Trifolium rubens). Pak J Bot 50:59–65

    Google Scholar 

  • Kong Z, Glick BR, Duan J et al (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398. https://doi.org/10.1007/s11104-015-2434-4

    Article  CAS  Google Scholar 

  • Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793. https://doi.org/10.1016/j.tplants.2018.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskey G, Mburu SW, Kimiti JM et al (2018) Genetic characterization and diversity of rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol 9:968. https://doi.org/10.3389/fmicb.2018.00968

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  • Kumar A (2017) Germination behaviour of soybean varieties under different salinity stress. Int J Appl Agric Res 12:69–76

    Google Scholar 

  • Kumar A, Verma J (2018) Does plant–microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci 8:1896. https://doi.org/10.3389/fpls.2017.01896

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Bharadwaj C, Sahu S et al (2021) Genome-wide identification and functional prediction of salt-stress related long non-coding RNAs (lncRNAs) in chickpea (Cicer arietinum L.). Physiol Mol Biol Plants 27:2605–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Khanna V (2015) (PDF) ACC-deaminase and EPS production by salt tolerant rhizobacteria augment growth in Chickpea under salinity stress. Int J Bio-Resour Stress Manag. https://doi.org/10.5958/0976-4038.2015.00084.6

    Article  Google Scholar 

  • Lan Y, Cai D, Zheng Y (2005) Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. J Integr Plant Biol 47:613–621

    Article  CAS  Google Scholar 

  • Lavania D, Siddiqui M, Al-Whaibi M et al (2014) Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiol Plant 37:1737. https://doi.org/10.1007/s11738-014-1737-z

    Article  CAS  Google Scholar 

  • Lavrenko S, Lavrenko N, Lykhovyd P (2019) Effect of degree of salinity on seed germination and initial growth of chickpea (Cicer arietinum). Biosyst Divers 27:101–105

    Article  Google Scholar 

  • Lelandais-Brière C, Naya L, Sallet E et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemaire B, Dlodlo O, Chimphango S et al (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91:1–17. https://doi.org/10.1093/femsec/fiu024

    Article  CAS  PubMed  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. https://doi.org/10.1186/1471-2229-13-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-P, Tian A-G, Luo G-Z et al (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Li TY, Zhang Y, Liu H et al (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 55:1127–1134

    Article  CAS  Google Scholar 

  • Li D, Zhang Y, Hu X et al (2011a) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:1–19

    Article  Google Scholar 

  • Li W, Wang D, Jin T et al (2011b) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Report 29:278–290. https://doi.org/10.1007/s11105-010-0224-y

    Article  CAS  Google Scholar 

  • Li Z, Xu J, Gao Y et al (2017) The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front Plant Sci 8:1153. https://doi.org/10.3389/fpls.2017.01153

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu Q, Feng H et al (2020) Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 16:862–877

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen R, Jiang Q et al (2021) GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol 105:333–345

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Hou X, Li J et al (2019) High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean. BMC Plant Biol 19:1–17

    Article  Google Scholar 

  • Liao Y, Zou H-F, Wei W et al (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  CAS  PubMed  Google Scholar 

  • Liu H-H, Tian X, Li Y-J et al (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang T-Z, Zhang W-H (2015a) Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environ Exp Bot 110:46–55

    Article  CAS  Google Scholar 

  • Liu W, Li R-J, Han T-T et al (2015b) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356. https://doi.org/10.1104/pp.15.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Li M, Su L et al (2016) Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Sci Rep 6:37943. https://doi.org/10.1038/srep37943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu J, Liu J et al (2019) The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake1[OPEN]. Plant Physiol 180:465–479. https://doi.org/10.1104/pp.18.01533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloret J, Wulff BBH, Rubio JM et al (1998) Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl Environ Microbiol 64:1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long R, Li M, Kang J et al (2015) Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiol Plant 154:13–27

    Article  CAS  PubMed  Google Scholar 

  • López M, Herrera-Cervera JA, Iribarne C et al (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  Google Scholar 

  • Luo G, Wang Y, Xie Z et al (2006) The putative Ser/Thr protein kinase gene GmAAPK from soybean is regulated by abiotic stress. J Integr Plant Biol 48:327–333

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402. https://doi.org/10.1128/AEM.69.8.4396-4402.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897. https://doi.org/10.1128/AEM.70.10.5891-5897.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Zhao D, Ning Q et al (2018) A multi-year beneficial effect of seed priming with gibberellic acid-3 (GA 3) on plant growth and production in a perennial grass, Leymus chinensis. Sci Rep 8:13214. https://doi.org/10.1038/s41598-018-31471-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN et al (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:1–31

    Article  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Mansouri L, Heleili N, Boukhatem Z, Kheloufi A (2019) Seed germination and radicle establishment related to type and level of salt in common bean (Phaseolus vulgaris L. var. djedida). Cercet Agron În Mold Agron Res Mold 52:262–277

    Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J et al (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509. https://doi.org/10.1104/pp.103.025619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbarki S, Skalicky M, Vachova P et al (2020) Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Chen F, Shuai H et al (2016) Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci Rep 6:1–12

    Google Scholar 

  • Metwali EMR, Abdelmoneim TS, Bakheit MA, Kadasa NMS (2015) Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics 8:449–460

    CAS  Google Scholar 

  • Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: implications in diseases. Free Radic Biol Med 47:344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Williams M, Loewen PC, Oresnik IJ (2006) Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiol Read Engl 152:2049–2059. https://doi.org/10.1099/mic.0.28937-0

    Article  CAS  Google Scholar 

  • Mishra S, Behura R, Awasthi JP et al (2014a) Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp Mol Breed 34:1345–1359

    Article  CAS  Google Scholar 

  • Mishra S, Panda SK, Sahoo L (2014b) Transgenic Asiatic grain legumes for salt tolerance and functional genomics. Rev Agric Sci 2:21–36

    Article  Google Scholar 

  • Mishra S, Alavilli H, Lee B et al (2015) Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance. Plant Cell Tissue Organ Cult PCTOC 120:19–33. https://doi.org/10.1007/s11240-014-0572-7

    Article  CAS  Google Scholar 

  • Mohammed A (2018) Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res 12:399–404. https://doi.org/10.5897/AJMR2018.8822

    Article  CAS  Google Scholar 

  • Mokrani S, Nabti E, Cruz C (2020) Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci 10:7025. https://doi.org/10.3390/app10207025

    Article  CAS  Google Scholar 

  • Moradi A (2016) Effect of mycorrhizal inoculation on growth, nitrogen fixation and nutrient uptake in alfalfa (Medicago sativa) under salt stress. Cercetări Agronomice în Moldova 1(165):67–80.

    Article  Google Scholar 

  • Moustafa-Farag M, Elkelish A, Dafea M et al (2020) Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Mol Basel Switz 25:E5359. https://doi.org/10.3390/molecules25225359

    Article  CAS  Google Scholar 

  • Muchate N, Rajurkar N, Suprasanna P, Nikam T (2019) NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Sci Rep 9:12522. https://doi.org/10.1038/s41598-019-48737-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscolo A, Panuccio MR, Zhair Z et al (2019) Use of plant growth-promoting rhizobacteria to ameliorate the performance of lentil under salinity: rhizobium and lentil under salinity. J Appl Bot Food Qual 92:179–186. https://doi.org/10.5073/JABFQ.2019.092.024

    Article  CAS  Google Scholar 

  • Mutch L, Young J (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444. https://doi.org/10.1111/j.1365-294X.2004.02259.x

    Article  CAS  PubMed  Google Scholar 

  • Nadeem S, Ahmad M, Zahir Z et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

    Article  PubMed  Google Scholar 

  • Nadeem M, Li J, Yahya M et al (2019) Grain legumes and fear of salt stress: focus on mechanisms and management strategies. Int J Mol Sci 20:799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najar R, Aydi S, Sassi-Aydi S et al (2019) Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosyst Int J Deal Asp Plant Biol 153:88–97

    Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS et al (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 9:e99168. https://doi.org/10.1371/journal.pone.0099168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento FX, Rossi MJ, Glick BR (2016) Role of ACC deaminase in stress control of leguminous plants. In: Subramaniam G, Arumugam S, Rajendran V (eds) Plant growth promoting actinobacteria: a new avenue for enhancing the productivity and soil fertility of grain legumes. Springer, Singapore, pp 179–192

    Chapter  Google Scholar 

  • Naz R, Bano A (2015) Molecular and physiological responses of sunflower (Helianthus Annuus L.) to pgpr and sa under salt stress. Pak J Bot 47:35–42

    CAS  Google Scholar 

  • Nguyen NT, Vu HT, Nguyen TT et al (2019a) Co-expression of Arabidopsis AtAVP1 and AtNHX1 to improve salt tolerance in soybean. Crop Sci 59:1133–1143

    Article  CAS  Google Scholar 

  • Nguyen Q, Vu L, Nguyen L et al (2019b) Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep 9:19663. https://doi.org/10.1038/s41598-019-55895-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning L, Kan G, Shao H, Yu D (2018) Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings. Land Degrad Dev 29:2707–2719

    Article  Google Scholar 

  • Noori F, Etesami H, Najafi Zarini H et al (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138. https://doi.org/10.1016/j.ecoenv.2018.06.092

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Bashir S, Khan Y et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  • Nyaga JW, Njeru EM (2020) Potential of native rhizobia to improve cowpea growth and production in semiarid regions of Kenya. Front Agron 2:28. https://doi.org/10.3389/fagro.2020.606293

    Article  Google Scholar 

  • Okazaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microb Environ 19:99–111. https://doi.org/10.1264/jsme2.19.99

    Article  Google Scholar 

  • Orabi S, Abdelhamid M (2016) Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci 15:145–154. https://doi.org/10.1016/j.jssas.2014.09.001

    Article  Google Scholar 

  • Orozco-Mosqueda M, Glick B, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439. https://doi.org/10.1016/j.micres.2020.126439

    Article  CAS  PubMed  Google Scholar 

  • Osman ME, Mohsen AA, Nessim AA et al (2019) Evaluation of biochar as a soil amendment for alleviating the harmful effect of salinity on Vigna unguiculata (L.) Walp. Egypt J Bot 59:617–631

    Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2014) Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. Plant Sci Int J Exp Plant Biol 223:16–24. https://doi.org/10.1016/j.plantsci.2014.02.005

    Article  CAS  Google Scholar 

  • Pantola S, Bargali K, Bargali S (2017) Effects of NaCl on germination and seedling growth in macrotyloma uniflorum and Vigna mungo. Curr Agric Res J 5:169

    Article  Google Scholar 

  • Panwar M, Tewari R, Nayyar H (2016) Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiol Mol Biol Plants 22:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paparella S, Araújo SS, Rossi G et al (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. https://doi.org/10.1007/s00299-015-1784-y

    Article  CAS  PubMed  Google Scholar 

  • de la Peña TC, Redondo FJ, Manrique E et al (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965. https://doi.org/10.1111/j.1467-7652.2010.00519.x

    Article  CAS  Google Scholar 

  • Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol 146:1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percey WJ, Shabala L, Breadmore MC et al (2014) Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240:729–743

    Article  CAS  PubMed  Google Scholar 

  • Phang T, Shao G, Lam H (2008) Salt tolerance in soybean. J Integr Plant Biol 50:1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Pi E, Xu J, Li H et al (2019) Enhanced salt tolerance of rhizobia-inoculated soybean correlates with decreased phosphorylation of the transcription factor GmMYB183 and altered flavonoid biosynthesis*. Mol Cell Proteom 18:2225–2243. https://doi.org/10.1074/mcp.RA119.001704

    Article  CAS  Google Scholar 

  • Pitann B, Kranz T, Zörb C et al (2011) Apoplastic pH and growth in expanding leaves of Vicia faba under salinity. Environ Exp Bot 74:31–36

    Article  CAS  Google Scholar 

  • Podder S, Ray J, Das D, Sarker BC (2020) Effect of salinity (NaCl) on germination and seedling growth of mungbean (Vigna radiata L.). J Biosci Agric Res 24:2012–2019

    Article  Google Scholar 

  • Preston JC, Hileman L (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Qados AMSA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15

    Google Scholar 

  • Qados AMSA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95

    Google Scholar 

  • Qados A, Moftah A (2015) Influence of silicon and nano-silicon on germination, growth and yield of Faba Bean (Vicia faba L.) under salt stress conditions. Am J Exp Agric. https://doi.org/10.9734/ajea/2015/14109

    Article  Google Scholar 

  • Qu L, Huang Y, Zhu C et al (2016) Rhizobia-inoculation enhances the soybean’s tolerance to salt stress. Plant Soil 400:209–222

    Article  CAS  Google Scholar 

  • Quan W, Liu X, Wang H, Chan Z (2016) Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-016-0981-x

    Article  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222. https://doi.org/10.5897/AJB2005.000-3041

    Article  CAS  Google Scholar 

  • Rabiei Z, Hosseini SJ, Pirdashti H, Hazrati S (2020) Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress. Heliyon 6:e05321. https://doi.org/10.1016/j.heliyon.2020.e05321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Bhuiyan M, Ali M et al (2017) Effect of arbuscular mycorrhizal fungi on the tolerance to sodium chloride levels, and on growth and yield of lentil (Lens culinaris). Agricult 15:156–169

    Article  Google Scholar 

  • Razzaq MK, Akhter M, Ahmad RM et al (2022) CRISPR-Cas9 based stress tolerance: new hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep 49:8977–8985

    Article  CAS  PubMed  Google Scholar 

  • Rohman MM, Molla MR, Akhi AH et al (2020) Use of osmolytes for improving abiotic stress tolerance in Fabaceae plants. The plant family Fabaceae. Springer, Berlin, pp 181–222

    Chapter  Google Scholar 

  • Russo DM, Williams A, Edwards A et al (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486. https://doi.org/10.1128/JB.00246-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagervanshi A, Naeem A, Geilfus C-M et al (2021) One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: Changes in key transcripts, metabolites, and ionic relations. Physiol Plant 172:146–161. https://doi.org/10.1111/ppl.13315

    Article  CAS  PubMed  Google Scholar 

  • Saghari M, Khoshrou V, Alahmadi MJ, Foroughifar H (2020) The effect of salinity stress on germination and growth characteristics of haloxylon aphyllum and halothamnus subaphyllus. Plant Arch 20:3664–3668

    Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Bio 48:593–600

    CAS  Google Scholar 

  • Sahoo D, Kumar S, Mishra S et al (2016) Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Mol Breed 36:144. https://doi.org/10.1007/s11032-016-0564-x

    Article  CAS  Google Scholar 

  • Saïdi S, Ramírez-Bahena M, Santillana N et al (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247. https://doi.org/10.1099/ijs.0.052191-0

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgotra RK, Gupta M (2019) Exploring the role of epigenetics in cereal and leguminous crops exposed to abiotic stress. Epigenetics in plants of agronomic importance: fundamentals and applications. Springer, Cham, pp 149–170

    Chapter  Google Scholar 

  • Sallam A, Ul-Allah S (2019) Genomics-aided breeding for climate-smart traits in Faba Bean. In: Kole C (ed) Genomic designing of climate-smart pulse crops. Springer, Cham, pp 359–395

    Chapter  Google Scholar 

  • Sanyal D, Bangerth F (1998) Stress induced ethylene evolution and its possible relationship to auxin-transport, cytokinin levels, and flower bud induction in shoots of apple seedlings and bearing apple trees. Plant Growth Regul 24:127–134. https://doi.org/10.1023/A:1005948918382

    Article  CAS  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A et al (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS ONE 9:e110507. https://doi.org/10.1371/journal.pone.0110507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci. https://doi.org/10.3389/fpls.2020.559876

    Article  PubMed  PubMed Central  Google Scholar 

  • Segami S, Makino S, Miyake A et al (2014) Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell 26:3416–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semida WM, Taha RS, Abdelhamid MT, Rady MM (2014) Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South Afr J Bot 95:24–31. https://doi.org/10.1016/j.sajb.2014.08.005

    Article  CAS  Google Scholar 

  • Sevanayak D, Edna A, Koti R et al (2020) Salinity tolerance of forage range legumes during germination and early seedling growth. Progressive Res 12:1357–1360

    Google Scholar 

  • Sadak M, Abdelhamid M, Schmidhalter U (2015) Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biológica Colomb 20:141–152. https://doi.org/10.15446/abc.v20n1.42865

    Article  Google Scholar 

  • Sehrawat N, Yadav M, Sharma AK et al (2019) Salt stress and mungbean [Vigna radiata (L.) Wilczek]: effects, physiological perspective and management practices for alleviating salinity. Arch Agron Soil Sci 65:1287–1301

    Article  Google Scholar 

  • Shahzad M, Zörb C, Geilfus C, Mühling KH (2013) Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J Agron Crop Sci 199:161–170

    Article  CAS  Google Scholar 

  • Sheidaei S, Zahedi M, Meibodo S (2011) Effect of salinity stress on dry matter accumulation and ion distribution pattern in five safflower (Carthamus tinctorius L.) genotypes. Iran J Field Crop Sci 41:811–819

    Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Qi Y, Chen F et al (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Sidari M, Santonoceto C, Anastasi U et al (2008) Variations in four genotypes of lentil under NaCl-salinity stress. Am J Agric Biol Sci 3:410–416

    Article  Google Scholar 

  • Silva LR, Bento C, Gonçalves AC et al (2017) Legume bioactive compounds: influence of rhizobial inoculation. AIMS Microbiol 3:267–278. https://doi.org/10.3934/microbiol.2017.2.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Shelke G, Kumar A, Jha P (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. https://doi.org/10.3389/fmicb.2015.00937

    Article  PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A et al (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smýkal P, Coyne C, Ambrose M et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104. https://doi.org/10.1080/07352689.2014.897904

    Article  Google Scholar 

  • Souana K, Taïbi K, Abderrahim LA et al (2020) Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Sci Hortic 273:109641

    Article  CAS  Google Scholar 

  • Stoddard FL, Balko C, Erskine W et al (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186. https://doi.org/10.1007/s10681-006-4723-8

    Article  Google Scholar 

  • Sun Y, Wang D, Bai Y et al (2006) Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: the reduced Na+ level is the basis of the increased salt tolerance. Chin Sci Bull 51:1306–1315

    Article  CAS  Google Scholar 

  • Sun Z, Wang Y, Mou F et al (2016) Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Front Plant Sci 6:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun T, Ma N, Wang C et al (2021) A golgi-localized sodium/hydrogen exchanger positively regulates salt tolerance by maintaining higher K+/Na+ ratio in soybean. Front Plant Sci 12:638340

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Swaraj K, Bishnoi NR (1999) Effect of salt stress on nodulation and nitrogen fixation in legumes. IJEB 37(09): 843-848

  • Tajini F, Trabelsi M, Drevon J (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163. https://doi.org/10.1016/j.sjbs.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2011) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5:3619–3628

    CAS  Google Scholar 

  • Tang R, Li C, Xu K et al (2010) Isolation, functional characterization, and expression pattern of a Vacuolar Na+/H+ antiporter Gene TrNHX1 from Trifolium repens L. Plant Mol Biol Report 28:102–111

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald G (2010) High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459. https://doi.org/10.1093/jxb/erq251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Paull J, Rengasamy P, McDonald G (2012) Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. Field Crops Res 127:99–108. https://doi.org/10.1016/j.fcr.2011.10.016

    Article  Google Scholar 

  • Teakle N, Tyerman S (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ 33:566–589. https://doi.org/10.1111/j.1365-3040.2009.02060.x

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC et al (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J Cell Mol Biol 23:363–374. https://doi.org/10.1046/j.1365-313x.2000.00789.x

    Article  CAS  Google Scholar 

  • Tian C, Wang E, Wu L et al (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875. https://doi.org/10.1099/ijs.0.2008/000703-0

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Guo F, Zhang Z et al (2020) Discovery, identification, and functional characterization of long noncoding RNAs in Arachis hypogaea L. BMC Plant Biol 20:1–16

    Article  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T et al (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6:e17968. https://doi.org/10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toker C (2014) Mutagenesis for resistance to abiotic stresses: chickpea as model crop. Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, Wageningen, pp 78–81

    Google Scholar 

  • Tlahig S, Bellani L, Karmous I et al (2021) Response to salinity in legume species: an insight on the effects of salt stress during seed germination and seedling growth. Chem Biodivers 18:e2000917

    Article  CAS  PubMed  Google Scholar 

  • Tsavkelova E (2011) Bacteria Associated with Orchid Roots. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 221–258

    Chapter  Google Scholar 

  • Uno Y, Furihata T, Abe H et al (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97:11632–11637. https://doi.org/10.1073/pnas.190309197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dam J, Faaij AP, Hilbert J et al (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part B. Environmental and socio-economic impacts on a regional level. Renew Sustain Energy Rev 13:1679–1709

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. https://doi.org/10.3762/bjnano.6.181

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahab AMA, Zahran HH (1981) Effects of salt stress on nitrogenase activity and growth of four legumes. Biol Plant 23:16. https://doi.org/10.1007/BF02909205

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang S-M, Zhang J-L, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T-Z, Liu M, Zhao M-G et al (2015a) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:1–13

    Article  Google Scholar 

  • Wang Y, Chai C, Valliyodan B et al (2015b) Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max). BMC Genom 16:951. https://doi.org/10.1186/s12864-015-2149-1

    Article  CAS  Google Scholar 

  • Wang Z, Cheng K, Wan L et al (2015c) Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genom 16:1–15

    Article  Google Scholar 

  • Wang W, Xia MX, Chen J et al (2016a) Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochem Mosc 81:465–480. https://doi.org/10.1134/S0006297916050047

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Z, Zhang P et al (2016b) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402:247–261. https://doi.org/10.1007/s11104-016-2792-6

    Article  CAS  Google Scholar 

  • Wang J, Meng X, Dobrovolskaya OB et al (2017) Non-coding RNAs and their roles in stress response in plants. GenomicsProteom Bioinform 15:301–312

    CAS  Google Scholar 

  • Wang Y, Jiang L, Chen J et al (2018a) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE 13:e0192382

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang Q, Shao Y et al (2018b) GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Glycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biol Hung 69:270–282

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liang L, Liu B et al (2020) Arbuscular mycorrhizas regulate photosynthetic capacity and antioxidant defense systems to mediate salt tolerance in maize. Plants 9:1430. https://doi.org/10.3390/plants9111430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Xun H, Wang W et al (2021) Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front Plant Sci 2752

  • Welgama A, Florentine S, Marchante H et al (2019) The germination success of Acacia longifolia subsp. longifolia (Fabaceae): a comparison between its native and exotic ranges. Aust J Bot 67:414–424

    Article  Google Scholar 

  • Williams L, Grigg SP, Xie M et al (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. 132(16):3657–3668

  • Windels D, Dang TT, Chen Z, Verdier J (2021) Snapshot of epigenetic regulation in legumes. Legume Sci 3:e60

    Article  Google Scholar 

  • Winicov I, Bastola D (1999) Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Li Z (2019) The importance of Cl exclusion and vacuolar Cl sequestration: revisiting the role of Cl transport in plant salt tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01418

    Article  PubMed  PubMed Central  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188. https://doi.org/10.1016/S0038-0717(01)00165-1

    Article  CAS  Google Scholar 

  • Xu J, Xue C, Xue D et al (2013) Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS ONE 8:e69810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Zhu Y, Zhao Y et al (2020) De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. BMC Genom 21:423. https://doi.org/10.1186/s12864-020-06823-4

    Article  CAS  Google Scholar 

  • Yang Q, Wu M, Wang P et al (2005) Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from Alfalfa. DNA Seq 16:352–357. https://doi.org/10.1080/10425170500272742

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang Z, Xue Y et al (2014) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55:70. https://doi.org/10.1186/s40529-014-0070-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yu T-F, Ma J et al (2020) The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci 21:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin NA, Khan WU, Ahmad SR et al (2018) Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res 25:4491–4505

    Article  CAS  Google Scholar 

  • Yasir TA, Khan A, Skalicky M et al (2021) Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules 26:2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yinsuo J, Gray V, Straker C (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258. https://doi.org/10.1093/aob/mch135

    Article  CAS  Google Scholar 

  • Yoo S-J, Weon H-Y, Sang J, Sang MK (2019) Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B mesonae H20-5 in tomato plants. J Microbiol Biotechnol 29:1124–1136. https://doi.org/10.4014/jmb.1904.04026

    Article  CAS  PubMed  Google Scholar 

  • Younesi O, Baghbani A, Namdari A (2013) The effects of Pseudomonas fluorescence and Rhizobium meliloti co-inoculation on nodulation and mineral nutrient contents in alfalfa (Medicago sativa) under salinity stress. Int J Agric Crop Sci IJACS 5:1500–1507

    Google Scholar 

  • Yousef A, Sprent J (1983) Effects of NaCl on growth, nitrogen incorporation and chemical composition of inoculated and NH4NO3 fertilized Vicia faba (L.) plants. J Exp Bot 34:941–950

    Article  CAS  Google Scholar 

  • Yousef F, Shafique F, Ali Q, Malik A (2020) Effects of salt stress on the growth traits of chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) seedlings. Biol Clin Sci Res J 2020:1

    Article  Google Scholar 

  • Yu X, Liu Y, Wang S et al (2016) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35:613–627

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Yu L, Hou Y et al (2019) Contrasting effects of NaCl and NaHCO3 stresses on seed germination, seedling growth, photosynthesis, and osmoregulators of the common bean (Phaseolus vulgaris L.). Agronomy 9:409

    Article  CAS  Google Scholar 

  • Yuan C, Li C, Lu X et al (2020) Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC Plant Biol 20:1–21

    Article  CAS  Google Scholar 

  • Yung W, Li M, Sze C et al (2021) Histone modifications and chromatin remodelling in plants in response to salt stress. Physiol Plant 173:1495–1513

    Article  CAS  PubMed  Google Scholar 

  • Zahaf O, Blanchet S, de Zélicourt A et al (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting medicago truncatula genotypes. Mol Plant 5:1068–1081. https://doi.org/10.1093/mp/sss009

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Marín-Manzano MC, Sánchez-Raya AJ et al (2007) Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiol Plant 131:122–130

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Evol Microbiol 41:104–113. https://doi.org/10.1099/00207713-41-1-104

    Article  Google Scholar 

  • Zhang W-H, Skerrett M, Walker NA et al (2002) Nonselective currents and channels in plasma membranes of protoplasts from coats of developing seeds of bean. Plant Physiol 128:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Walker NA, Patrick JW, Tyerman SD (2004) Calcium-dependent K current in plasma membranes of dermal cells of developing bean cotyledons. Plant Cell Environ 27:251–262

    Article  Google Scholar 

  • Zhang Y, Zheng W, Everall I et al (2015) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967. https://doi.org/10.1099/ijs.0.000365

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yasmin F, Song BH (2019) Neglected treasures in the wild—legume wild relatives in food security and human health. Curr Opin Plant Biol 49:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang N, Yang J et al (2020) The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci 291:110326

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Bao Y (2015) Effect of arbuscular mycorrhizal fungi on growth and two phenolic acids of Medicago sativa under various mixed salt-alkaline stresses. Acta Bot Boreali-Occident Sin 35:1829–1836

    CAS  Google Scholar 

  • Zhou Q, Tian A, Zou H et al (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhou SJ, Jing Z, Shi JL (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet Mol Res 12:6565–6578

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article is being produced in the framework of the PRIMA DIVICIA project.

Author information

Authors and Affiliations

Authors

Contributions

Writing-Original draft preparation, SB and FH; Writing-Review and editing, MF and AS; Supervision, MF and AS. All authors have read and agreed the proof version to be published.

Corresponding authors

Correspondence to Sarah Bouzroud or Abdelaziz Smouni.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzroud, S., Henkrar, F., Fahr, M. et al. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 13, 287 (2023). https://doi.org/10.1007/s13205-023-03643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03643-7

Keywords

Navigation