Skip to main content
Log in

Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Alfalfa (Medicago sativa L.) acts as a most important legume forage crop and is widely cultivated in various environments. Salt stress is one of the major abiotic stresses in cultivation of alfalfa worldwide. Development of alfalfa cultivars for adaptable to salt environments can provide sustainable solutions. In the present study, we selected two varieties with contrasting salt tolerance—211609 and Xinjiang Daye—from 14 alfalfa varieties. Under salt stress condition, 211609 showed higher leaf water content, less severe cell membrane damage (Electrolyte leakage) and lower accumulation of reactive oxygen species than Xinjiang Daye which exhibited lower GSH content and less antioxidant enzyme activities. In addition, significantly higher expression levels of NHX1, ZFG, CBF4 and HSP23 genes were found in 211609 than those in Xinjiang Daye upon exposure to salt stress. Collectively, these results proved that 211609 showed higher tolerance to salt stress than Xinjiang Daye through regulation of physiological and transcriptional pathways. It could play an important role in breeding program of alfalfa varieties with improved stress tolerance in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alhdad GM, Seal CE, Al-Azzawi MJ, Flowers TJ (2013) The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environ Exp Bot 87:120–125

    Article  CAS  Google Scholar 

  • Anower MR, Mott IW, Peel MD, Wu Y (2013) Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol Biochem 71:103–111

    Article  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Mcneilly T, Bradshaw AD (1986) The response to NaCl and ionic content of selected salt-tolerant and normal lines of three legume forage species in sand culture. New Phytol 104:463–471

    Article  CAS  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS ONE 3:e1705

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrow RN (1995) Drought resistance aspects of turfgrass in the southeast: evapotraspiration and crop coefficients. Crop Sci 35:1685–1690

    Article  Google Scholar 

  • Castroluna A, Ruiz OM, Quiroga AM, Pedranzani HE (2014) Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Av Investig Agropecu 18:39–50

    Google Scholar 

  • Chao Y, Kang J, Sun Y, Yang Q, Wang P, Wu M, Li Y, Long R, Qin Z (2009) Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L. Mol Biol Rep 36:2315–2321

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Demiral T, Türkan İ (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell, Tissue Organ Cult 114:61–70

    Article  CAS  Google Scholar 

  • Erkan M, Wang SY, Wang CY (2008) Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol Technol 48:163–171

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gao S, Xu H, Cheng X, Chen M, Xu Z, Li L, Ye X, Du L, Hao X, Ma Y (2005) Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor Gm DREB of soybean (Glycine max). Chin Sci Bull 50:2714–2723

    Article  CAS  Google Scholar 

  • Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol Genet Genom 281:55–66

    Article  CAS  Google Scholar 

  • Hu L, Wang Z, Huang B (2010) Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiol Plant 139:93–106

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Chang Q, Li W, Lin D, Li Z, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Johnson DW, Smith SE, Dobrenz AK (1992) Selection for increased forage yield in alfalfa at different NaCl levels. Euphytica 60:27–35

    CAS  Google Scholar 

  • Kumar S, Singla-Pareek SL, Reddy MK, Sopory SK (2003) Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J Plant Biol 30:179–187

    Google Scholar 

  • Lee KW, Cha JY, Kim KH, Lee BH, Lee SH (2012a) Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol Lett 34:167–174

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Choi GJ, Kim KY, Ji HJ, Park HS, Kim YG, Lee BH, Lee SH (2012b) Transgenic expression of MsHsp23 confers enhanced tolerance to abiotic stresses in tall fescue. Asian Australas J Anim Sci 25:818–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW, Kim KH, Kim YG, Lee BH, Lee SH (2012c) Identification of MsHsp23 gene using annealing control primer system. Acta Physiol Plant 34:807–811

    Article  CAS  Google Scholar 

  • Li X, Brummer EC (2012) Applied genetics and genomics in alfalfa breeding. Agronomy 2:40–61

    Article  CAS  Google Scholar 

  • Li X, Tian A, Luo G, Gong Z, Zhang J, Chen S (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ding X, Du P (2013) Hydrogen sulfide donor sodium hydrosulfide- improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang G, Zhao J, Zhang L, Ai L, Han Y, Sun D, Zhang S, Sun Y (2014a) The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26:2538–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS (2014b) Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem 85:31–40

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang T, Zhang W (2015) Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcate and Medicago truncatula seedlings. Environ Exp Bot 110:46–55

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN (2011) Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity- responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  • Noble CL, Halloran GM, West DW (1984) Identification and selection for salt tolerance in lucerne (Medicago sativa L.). Aust J Agric Res 35:239–252

    Article  Google Scholar 

  • Osborn T, Brouwer D, McCoy T (1997) Molecular marker analysis of alfalfa. In: McKersie B, Brown D (eds) Biotechnology and the Improvement of Forage Legumes. CABI Publishing, Wallingford, pp 91–109

    Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol 146:1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccinni G, Rush CM, Vaughn KM, Lazar MD (2000) Lack of relationship between susceptibility to common root rot and drought tolerance among several closely related wheat lines. Plant Dis 84:25–28

    Article  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scasta JD, Trostle CL, Foster MA (2012) Evaluating alfalfa (Medicago sativa L.) cultivars for salt tolerance using laboratory, greenhouse and field methods. J Agric Sci 4:90–103

    Google Scholar 

  • Schonhof I, Kläring HP, Krumbein A, Claußen W, Schreiner M (2007) Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric Ecosyst Environ 119:103–111

    Article  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Li R, Cai W, Wang C, Lu Y (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol 53:344–357

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    Article  CAS  PubMed  Google Scholar 

  • Tang LL, Cai H, Zhai H, Luo X, Wang ZY, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell, Tissue Organ Cult 118:77–86

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev 42:579–620

    CAS  Google Scholar 

  • Wang W, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li H, Ke Q, Jeong JC, Lee HS, Xu B, Deng XP, Lim YP, Kwak SS (2014) Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiol Biochem 84:67–77

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Yang Q, Sun Y, Kang J (2005) Research on the advancement of salt tolerant genes in alfalfa. Acta Agrestia Sin 13:253–256

    Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

  • Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Niu Y, Huridu H, Hao J, Qi Z, Hasi A (2014) Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res 13:5350–5360

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by “the Hundred Talents Program”, the Knowledge Innovative Key Program of Chinese Academy of Sciences (Grant No. Y154761O01076 and No. Y329631O0263) and Funding Project of Sino-Africa Joint Research Center to Zhulong Chan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiqing Wang or Zhulong Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, W., Liu, X., Wang, H. et al. Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress. Plant Cell Tiss Organ Cult 126, 105–115 (2016). https://doi.org/10.1007/s11240-016-0981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0981-x

Keywords

Navigation