Skip to main content
Log in

Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

From soybean plant, 131 bZIP genes were identified and named as GmbZIPs. The GmbZIPs can be classified into ten groups and more than one third of these GmbZIPs are responsive to at least one of the four treatments including ABA, salt, drought and cold stresses. Previous studies have shown that group A bZIP proteins are involved in ABA and stress signaling. We now chose four non-group A genes to study their features. The four proteins GmbZIP44, GmbZIP46, GmbZIP62 and GmbZIP78 belong to the group S, I, C and G, respectively, and can bind to GLM (GTGAGTCAT), ABRE (CCACGTGG) and PB-like (TGAAAA) elements with differential affinity in both the yeast one-hybrid assay and in vitro gel-shift analysis. GmbZIP46 can form homodimer or heterodimer with GmbZIP62 or GmMYB76. Transgenic Arabidopsis plants overexpressing the GmbZIP44, GmbZIP62 or GmbZIP78 showed reduced ABA sensitivity. However, all the transgenic plants were more tolerant to salt and freezing stresses when compared with the Col plants. The GmbZIP44, GmbZIP62 and GmbZIP78 may function in ABA signaling through upregulation of ABI1 and ABI2 and play roles in stress tolerance through regulation of various stress-responsive genes. These results indicate that GmbZIP44, GmbZIP62 and GmbZIP78 are negative regulators of ABA signaling and function in salt and freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GmbZIP:

Glycine max basic/leucine zipper protein

BD:

Binding domain

References

  • Bates LS, Waldre RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Yoo CM, Park JM, Ryu GR, Goekjian VH, Nagao RT, Key JL, Cho MJ, Hong JC (1998) STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins. Plant J 15:199–209

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park O, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice itogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, Taparowsky EJ, Vinson C (2004) Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Res 32:3435–3445

    Article  PubMed  CAS  Google Scholar 

  • Droge-Laser W, Kaiser A, Linday WP, Halkier BA, Loake GJ, Doerner P, Dixon RA, Lamb C (1997) Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J 16:726–738

    Article  PubMed  CAS  Google Scholar 

  • Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Droge-Laser W (2006) Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Garcia MP, Rodriguez D, Nicolas C, Rodriguez PL, Nicolas G, Lorenzo O (2003) Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol 133:135–144

    Article  PubMed  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Miller L (1994) Molecular characterization of the DNA binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol 26:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • He CY, Zhang JS, Chen SY (2002) A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet 104:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  PubMed  CAS  Google Scholar 

  • Hong JC, Cheong YH, Nagao RT, Bahk JD, Key JL, Cho MJ (1995) Isolation of two soybean G-box binding factors which interact with a G-box sequence of an auxin-responsive gene. Plant J 8:199–211

    Article  PubMed  CAS  Google Scholar 

  • Hughes CA, Beard HS, Matthews BF (1997) Molecular cloning and expression of two cDNAs encoding asparagine synthetase in soybean. Plant Mol Biol 33:301–311

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Abdel Wahid AA, Paul Quick W, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Koster KK, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of pumarye. Plant Physiol 98:108–113

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007a) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51:897–909

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007b) An endoplasmic reticulum stress responses in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19:4111–4119

    Article  PubMed  CAS  Google Scholar 

  • Luo GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS, Chen SY (2005) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol 59:809–820

    Article  PubMed  CAS  Google Scholar 

  • Luo GZ, Wang YJ, Xie ZM, Gai JY, Zhang JS, Chen SY (2006) The putative Ser/Thr protein kinase gene GmAAPK from soybean is regulated by abiotic stress. J Integr Plant Biol 48:327–333

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2005) Molecular studies on stress-responsive gene expression in Arabidopsis and improvement of stress tolerance in crop plants by regulon biotechnology. JARQ 39:221–222

    CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    Article  PubMed  CAS  Google Scholar 

  • Onate L, Vicente-Carbajosa J, Lara P, Diaz I, Carbonero P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274:9175–9182

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transciption factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317

    Article  PubMed  CAS  Google Scholar 

  • Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11:1261–1273

    PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Shimosaka E (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci 123:93–104

    Article  CAS  Google Scholar 

  • Tian AG, Zhao JY, Zhang JS, Gai JY, Chen SY (2004a) Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. Theor Appl Genet 108:842–850

    Article  PubMed  CAS  Google Scholar 

  • Tian AG, Wang J, Cui P, Yu J, Xu HH, Cong LJ, Huang XG, Wang XL, Jiao YZ, Wang BJ, Wang YJ, Zhang JS, Chen SY (2004b) Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet 108:903–913

    Article  PubMed  Google Scholar 

  • Verslues PE, Kim YS, Zhu JK (2007) Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate: glyoxylate aminotransferase mutant. Plant Mol Biol 64:205–217

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, Yunes JA, Neto GC, da Silva MJ, Arruda P, Leite A (1998) The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins. Plant Mol Biol 36:249–263

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Onate L, Lara P, Diaz I, Carbonero P (1998) Barley BLZ1: a bZIP transcriptional activator that interacts with endosperm-specific gene promoters. Plant J 13:629–640

    Article  PubMed  CAS  Google Scholar 

  • Vinson C, Acharya A, Taparowsky EJ (2006) Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta 1759:4–12

    PubMed  CAS  Google Scholar 

  • Wang H, Liu D, Sun J, Zhang A (2005a) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Li YD, Luo GZ, Tian AG, Wang HW, Zhang JS, Chen SY (2005b) Cloning and characterization of an HDZip I gene GmHZ1 from soybean. Planta 221:831–843

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schutze K, Alonso R, Harter K, Vicente-Carbajosa J, Droge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerization of bZIP transcription factors. EMBO J 25:3133–3143

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimol mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramaniania S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by a Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  PubMed  CAS  Google Scholar 

  • Zhang JS, Gu J, Liu FH, Chen SY (1995) A gene encoding a truncated large subunit of Rubisco is transcribed and salt-inducible in rice. Theor Appl Genet 91:361–366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2004CB117200, 2006CB100102, 2002CB111303), the National Natural Science Foundation of China (30490254) and the National Hightech Program (2006AA10A111, 2006AA10Z113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Song Zhang or Shou-Yi Chen.

Additional information

Yong Liao and Hong-Feng Zou contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2008_731_MOESM1_ESM.doc

Supplementary Table 1 Accession numbers and expressions of 131 soybean GmbZIP genes in response to ABA and abiotic stresses. (DOC 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Y., Zou, HF., Wei, W. et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis . Planta 228, 225–240 (2008). https://doi.org/10.1007/s00425-008-0731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0731-3

Keywords

Navigation