Skip to main content
Log in

Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Salt stress negatively affects alfalfa (Medicago sativa L.) production and biological nitrogen fixation. We investigated whether rhizobium symbiosis has an effect on host plant tolerance to salt stress.

Methods

We determined the survival rate, oxidative damage level, activities of antioxidant enzymes, and contents of osmotic solutes in the leaf and root of 4-month-old alfalfa with active nodules, inactive nodules or without nodules, and under short-term salt stress.

Results

Alfalfa with active nodules showed higher survival rate. Higher survival rate was associated with reduced lipid peroxidation, higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) as well as higher concentrations of reduced glutathione (GSH) and soluble sugar, especially in roots under salt stress. Variance analysis indicated nodulation affected the activities of SOD, CAT, POD, and APX along with concentrations of GSH, soluble sugar, and soluble protein. Inoculation also resulted in higher basal levels of superoxide anion radical (O2 ·) without salt stress.

Conclusions

Rhizobium symbiosis had a positive effect on alfalfa salt tolerance by improving the activity of antioxidant enzymes and osmotic adjustment capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

APX:

Ascorbate peroxidase

GSH:

Reduced glutathione

O2 ·:

Superoxide anion radical

ROS:

Reactive oxygen species

AN:

Alfalfa with active nodules

IN:

Alfalfa with inactive nodules

NN:

Alfalfa with no nodules

References

  • Aranjuelo I, Molero G, Erice G, Aldasoro J, Arrese-Igor C, Nogués S (2015) Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen-fixing alfalfa. Physiol Plant 153:91–104

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, O'Leary JW (1999) Changes in soluble proteins in spring wheat stressed with sodium chloride. Biol Plant 42:113–117

    Article  CAS  Google Scholar 

  • Ashrafi E, Razmjoo J, Zahedi M, Pessarakli M (2015) Screening alfalfa for salt tolerance based on lipid peroxidation and antioxidant enzymes. Agron J 107:167–173

    Article  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Gomes Filho E (2009) Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J Plant Interact 4:137–144

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe‐Ormaetxe I, Matamoros MA, Rubio CM (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanos L, Martín M, El-Hamdaoui A, Rivilla R, Bonilla I (2006) Nitrogenase inhibition in nodules from pea plants grown under salt stress occurs at the physiological level and can be alleviated by B and Ca. Plant Soil 280:135–142

    Article  CAS  Google Scholar 

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chaudhuri K, Chouchuri M (1993) Effects of short-term NaCl salinity stress on free radical mediated membrane damage in two jute species. Indian J Exp Biol 31:327–331

    CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Cordovilla MDP, Ligero F, Lluch C (1999) Effects of NaCl on growth and nitrogen fixation and assimilation of inoculated and KNO3 fertilized Vicia faba L. and Pisum sativum L. plants. Plant Sci 140:127–136

    Article  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    CAS  PubMed  Google Scholar 

  • Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem, Anal Ed 18:499–499

    Article  CAS  Google Scholar 

  • El-Akhal M, Rincón A, Coba de la Peña T, Lucas MM, El Mourabit N, Barrijal S, Pueyo JJ (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol 15:415–421

    Article  CAS  PubMed  Google Scholar 

  • El Msehli S et al (2011) Crucial role of (homo) glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol 192:496–506

    Article  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616

    Article  CAS  PubMed  Google Scholar 

  • Ertani A, Schiavon M, Muscolo A, Nardi S (2013) Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364:145–158

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Frendo P, Harrison J, Norman C, Jiménez MJH, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant-Microbe Interact 18:254–259

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas M (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Groten K et al (2006) Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett 580:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Harrison J, Jamet A, Muglia CI, Van de Sype G, Aguilar OM, Puppo A, Frendo P (2005) Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez J, Olmos E, Corpas F, Sevilla F, Del Rio L (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn, Circ 347

  • Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurkman WJ, Fornari CS, Tanaka CK (1989) A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a salt-sensitive cultivar of barley. Plant Physiol 90:1444–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Lauter D, Munns D, Clarkin K (1981) Salt response of chickpea as influenced by N supply. Agron J 73:961–966

    Article  CAS  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218

    Article  CAS  Google Scholar 

  • Mittova V, Volokita M, Guy M (2015) Antioxidative systems and stress tolerance: insight from wild and cultivated tomato species. Reactive oxygen and nitrogen species signaling and communication in plants. Springer, In, pp 89–131

    Google Scholar 

  • Morant-Manceau A, Pradier E, Tremblin G (2004) Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J Plant Physiol 161:25–33

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Palma F, Tejera NA, Lluch C (2013) Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environ Exp Bot 85:43–49

    Article  CAS  Google Scholar 

  • Pauly N et al (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume–Rhizobium symbiosis. J Exp Bot 57:1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Peleg-Grossman S, Melamed Book N, Levine A (2012) ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signaling Behav 7:409–415

    Article  CAS  Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Aroca R, Ruiz Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustainable Dev 32:181–200

    Article  CAS  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi T, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Redondo FJ, de la Pena TC, Lucas MM, Pueyo JJ (2012) Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress. Planta 236:1687–1700

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in Alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant-Microbe Interact 14:86–89

    Article  CAS  PubMed  Google Scholar 

  • Sassi-Aydi S, Aydi S, Abdelly C (2012) Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar. Acta Agric Scand, Sect B 62:179–187. doi:10.1080/09064710.2011.597425

    CAS  Google Scholar 

  • Serraj R, Drevon JJ (1998) Effects of salinity and nitrogen source on growth and nitrogen fixation in alfalfa. J Plant Nutr 21:1805–1818

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    Article  CAS  Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR, Putnam AR (1991) Significance of phenolic compounds in plant‐soil‐microbial systems. Crit Rev Plant Sci 10:63–121

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C (1999) Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci 141:1–9

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89

    Article  CAS  PubMed  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • Yousef A, Sprent J (1983) Effects of NaCl on growth, nitrogen incorporation and chemical composition of inoculated and NH4NO3 fertilized Vicia faba (L.) plants. J Exp Bot 34:941–950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of National Natural Science Foundation of China (31372357, 31272490), the National Key Technology R&D Program in the 12th Five-Year Plan of China (2011BAD17B05), the major project for Tibetan forage industry (Z2014C02N02), and China Agriculture Research System (CARS-35). The authors thank Drs. Yajun Wu and Roger N Gates from South Dakota State University for their advice on statistical analysis and constructive comments to this manuscript, as well as the anonymous reviewers for their thoughtful critique and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianming Hu or Peizhi Yang.

Additional information

Responsible Editor: Timothy J. Flowers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Z., Zhang, P. et al. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402, 247–261 (2016). https://doi.org/10.1007/s11104-016-2792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2792-6

Keywords

Navigation