Skip to main content
Log in

Soybean DRE-binding transcription factors that are responsive to abiotic stresses

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Three DREB homologue genes, GmDREBa,GmDREBb, and GmDREBc, were isolated from soybean, Glycine max (L.) Merr. Each of the deduced proteins contains an AP2 domain of 64 amino acids. Yeast one-hybrid assay revealed that all of the three dehydration-responsive, element-binding proteins specifically bound to the dehydration-responsive element. Analysis of transcriptional activation abilities of these proteins in yeast indicated that GmDREBa and GmDREBb could activate the expression of a reporter gene, whereas GmDREBc could not. The transcriptions of GmDREBa and GmDREBb were induced by salt, drought, and cold stresses in leaves of soybean seedlings. The expression of GmDREBc was not significantly affected in leaves but apparently induced in roots by salt, drought, and abscisic acid treatments. These results suggest that these three genes function specifically in response to abiotic stresses in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Google Scholar 

  • Chen SY, Zhu LH, Hong J, Chen SL (1991) Molecular biological identification of a salt-tolerance rice line. Acta Bot Sin 33:569–573

    Google Scholar 

  • Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107:972–979

    Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong XH, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet ED, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encoded transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Google Scholar 

  • Jofuku KD, den Boer BGW, Van Montagu M, Okamurw JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene ATETALA2. Plant Cell 6:1211–1225

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki Y, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469

    Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003a) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    Google Scholar 

  • Shen YG, He SJ, Zhang WK, Zhang JS, Liu Q, Chen SY (2003b) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Google Scholar 

  • Tian AG, Wang J, Cui P, Han YJ, Xu H, Cong LJ, Huang XG, Wang XL, Jiao YZ, Wang BJ, Wang YJ, Zhang JS, Chen SY (2004) Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet 108:903–913

    Google Scholar 

  • Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet 107:1402–1409

    Google Scholar 

  • Wilson W, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Google Scholar 

  • Zhang JS, Zhou JM, Zhang C, Chen SY (1996) Differential gene expression in a salt-tolerance rice mutant and its parental variety. Sci China (C) 39:310–319

    Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Qiang Liu for kindly providing the yeast one-hybrid system. This work was supported by National High Technology Program (2002AA224091), the National Key Basic Research Project (2002CB111303), and the National Transgenic Research Project (AY03A-10-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Zhang.

Additional information

Communicated by F. J. Muehlbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XP., Tian, AG., Luo, GZ. et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110, 1355–1362 (2005). https://doi.org/10.1007/s00122-004-1867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1867-6

Keywords

Navigation