Skip to main content
Log in

Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Efficient compartmentalization of Na+ ions into the vacuole through heterologous overexpression of vacoular antiporter gene NHX1 is a promising approach to develop salt tolerance in plants. Mungbean (Vigna radiata L. Wilczek) is an important grain legume widely cultivated in Southeast Asia for its protein rich grains. Salinity affects growth and productivity of mungbean. In this paper, we report overexpression of an Arabidopsis NHX1 (AtNHX1) in transgenic mungbean plants conferred enhanced salt tolerance. Cotyledonary node explants were transformed via Agrobacterium tumefaciens mediated transformation using pCAMBIA2301 vector that harbours 35S::AtNHX1 in its T-DNA. Putative transformed plants were selected on kanamycin containing medium. Polymerase chain reaction and Southern blot analysis confirmed the presence, integration and copy number of transgenes in T1 transgenic lines. Reverse transcription-PCR analysis showed higher expression of AtNHX1 in transgenic plants as compared to wild type plants (WT). Under salt stress conditions, T2 transgenic lines displayed less damage and stronger growth phenotypes with concurrent physiological changes as compared to WT. In addition, T2 transgenic lines under salt stress accumulated higher K+/Na+ in the aerial parts and higher [Na+] in roots than WT. Moreover, the T2 transgenic lines showed under NaCl treatment reduced membrane lipid peroxidation and H2O2 and O2 accumulation, higher levels of antioxidant enzyme activity and increased accumulation of proline and ascorbate than WT. These results indicated that the activity of heterologous AtNHX1 protein contributing enhanced salt tolerance in transgenic mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:618–633

    Article  Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1 in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256

    Article  CAS  PubMed  Google Scholar 

  • Avenido RA, Hattori K (2001) Benzyladenine-preconditioning in germinating mungbean seedlings stimulates axillary buds in cotyledonary nodes resulting in multiple shoot regeneration. Breed Sci 51:137–142

    Article  CAS  Google Scholar 

  • Bakshi S, Roy NK, Sahoo L (2012) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tissue Organ Cult 110:77–91

    Article  CAS  Google Scholar 

  • Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67

    Article  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta BBA Biomembr 1465:140–151

    Article  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Deng G, Wang H, Zhang H, Zhang P (2015) Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiol Plant 154:560–571

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo SFL, Albarello N, Viana VRC (2001) Micropropagation of Rollinia mucosa (JACQ.) baill. In Vitro Cell Dev Biol Plant 37:471–475

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Peter Singh L, Gill R, Tuteja N (2012) Generation and scavenging of reactive oxygen species in plants under stress. Improv Crop Resist Abiotic Stress 1 & 2:49–70

    Article  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:1–18

    Article  CAS  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Tammi RS, Singla-Pareek SL, Seraj ZI (2010) Enhanced salinity tolerance and improved yield properties in Bangladeshi rice Binnatoa through Agrobacterium-mediated transformation of PgNHX1 from Pennisetum glaucum. Acta Physiologiae Plantarum 32:657–663

    Article  CAS  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)-a recalcitrant grain legume. Plant Sci 161:239–247

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141

    Article  Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Trends in genetic engineering of plants with (Na+/H+) antiporters for salt stress tolerance. Biotechnol Biotechnol Equip 29(5):815–825

    Article  CAS  Google Scholar 

  • Kucharska D, Orlikowska T (2009) Enhancement of in vitro organogenetic capacity of rose by preculture of donor shoots on the medium with thidiazuron. Acta Physiologiae Plantarum 31:495–500

    Article  CAS  Google Scholar 

  • Li TY, Zhang Y, Liu H, Wu Y, Li W, Zhang H (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 55:1127–1134

    Article  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Report 29:278–290

    Article  CAS  Google Scholar 

  • Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol 53:444–452

    Article  CAS  Google Scholar 

  • Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi LS, Leela T, Kumar SM, Kumar BK, Naresh B, Devi P (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93

    CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Panda SK, Sahoo L (2014a) Transgenic asiatic grain legumes for salt tolerance and functional genomics. Rev Agri Sci 3:21–36

    Google Scholar 

  • Mishra S, Behura R, Awasthi JP, Dey M, Sahoo D, Bhowmik SSD, Panda SK, Sahoo L (2014b) Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp. Mol Breed 34:1345–1359

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2006) Recalcitrant grain legume Vigna radiata, mung bean, made to regenerate on change of hormonal and cultural conditions. Plant Cell Tissue Organ Cult 85:265–270

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nair RM, Yang RY, Easdown WJ, Thavarajah D, Thavarajah P, Hughes JDA (2013) Keatinge JDH (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agric 93:1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Platts BE, Grismer ME (2014) Chloride levels increase after 13 years of recycled water use in the Salinas Valley. California Agriculture 68(3)

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Ghosh S (2013) Physiological and biochemical responses of mungbean (Vigna radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique J Pharm Biol Sci 1:11–21

    Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol 57:308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593

    CAS  PubMed  Google Scholar 

  • Sahoo L, Jaiwal PK (2008) Asiatic beans. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Blackwell, Oxford, pp 115–132

    Chapter  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Over-expression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Singh BB (2011) Breeding for tolerance to abiotic stresses in mungbean. J Food Legum 24:83–90

    Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonia Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Jensen CS, Vainstein A, Altman A (1997) Transformation and regeneration of transgenic aspen plants via shoot formation from stem explants. Physiol Plant 99:554–561

    Article  CAS  Google Scholar 

  • Vijayan S, Kirti PB (2012) Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani. Transgenic Res 21:193–200

    Article  CAS  PubMed  Google Scholar 

  • Vijayan S, Beena MR, Kirti PB (2006) Simple and effective regeneration of Mungbean (Vigna radiata L. Wilczek) using cotyledonary node explants. J Plant Biochem Biotechnol 15:131–134

    Article  CAS  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yadav SK, Sreenu P, Maheswari M, Vanaja M, Venkateswarlu B (2010) Efficient shoot regeneration from double cotyledonary node explants of green gram (Vigna radiata L. Wilczek). Indian J Biotechnol 9:403–407

    CAS  Google Scholar 

  • Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, Maddi V, Mandapaka M, Shanker AK, Bandi V, Bharadwaja KP (2012) Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata. SpringerPlus 1:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 42:451–461

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Prof. Sampa Das, Bose Institute for providing Agrobacterium tumefaciens strain, EHA105 and Center for Application of Molecular Biology to International Agriculture (CAMBIA), Australia for pCAMBIA2301. The research was supported partially by various Grants from Department of Biotechnology, Government of India (BT/PR10818/AGR/02/591/2008, BT/01/NE/PS/08 and BT/PR13560/COE/34/44/2015) to LS. DPS and SM are grateful to DBT and MHRD for Research Fellowship at IIT Guwahati.

Authors contribution

LS conceived and designed the experiments. DPS and SK produced the transgenic plants. DPS, SM and YK performed molecular characterisation of transgenics. DPS performed the physiological and biochemical experiments. SKP assisted in physiological assays. LS critically analysed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjib Kumar Panda or Lingaraj Sahoo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the present investigation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, D.P., Kumar, S., Mishra, S. et al. Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Mol Breeding 36, 144 (2016). https://doi.org/10.1007/s11032-016-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0564-x

Keywords

Navigation