Skip to main content
Log in

Flower-like CuS/γ-Fe2O3 van der Waals heterostructures with high-efficient electromagnetic wave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The escalating electromagnetic (EM) pollution issues and the demand to elevate military stealth technology make it imperative to develop cost-effective and high-performance electromagnetic wave (EMW) absorbing materials. In this paper, the flower-like CuS/γ-Fe2O3 van der Waals (vdW) heterostructures have been synthesized via a facile two-step solvothermal approach. The flower-like CuS skeleton increases the attenuation path of EMW while reducing the material density. Different contents of γ-Fe2O3 nanoparticles anchor between the flower-like CuS nanosheets to constitute a heterogeneous structure, which enables dielectric and magnetic loss synergistically to optimize impedance matching and remarkably improve the EMW absorption performance. The minimum reflection loss (RLmin) is −49.36 dB with a thickness of only 1.6 mm and the effective absorption bandwidth (EAB) reaches 4.64 GHz (13.36–18 GHz). By adjusting the thickness of the absorber, the EAB can cover 96% of the GHz band. Notably, the superior absorption of −61.53 dB at middle frequency band can be obtained by adjusting the amount of Fe2O3 addition. In this study, the adjustment of EM parameters and the optimization of impedance matching have been achieved by constructing a novel vdW heterogeneous structure, which provides fresh ideas and references for the design of high-performance EMW absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  PubMed  Google Scholar 

  2. Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

    Article  CAS  Google Scholar 

  3. Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

    Article  ADS  CAS  Google Scholar 

  4. Xu, J.; Ma, W. J.; He, P.; Zhou, Y. K.; Liu, X. Y.; Chen, Y.; Zuo, P. Y.; Zhuang, Q. X. A water-induced self-assembly approach to 3D hierarchical magnetic MXene networks for enhanced microwave absorption. J. Mater. Chem. A 2023, 11, 330–340.

    Article  CAS  Google Scholar 

  5. Gu, H. L.; Huang, J.; Li, N.; Yang, H.; Chen, G.; Dong, C. J.; Gong, C. H.; Guan, H. T. Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 2023, 146, 145–153.

    Article  CAS  Google Scholar 

  6. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    Article  CAS  Google Scholar 

  7. Bao, S. S.; Zhang, M. X.; Bu, X. J.; Zhang, W. B.; Jiang, Z. Y.; Xie, Z. X. Combinatorial structural engineering of multichannel hierarchical hollow microspheres assembled from centripetal Fe/C nanosheets to achieve effective integration of sound absorption and microwave absorption. ACS Appl. Mater. Interfaces 2023, 15, 13565–13575.

    Article  CAS  PubMed  Google Scholar 

  8. Li, Z. J.; Lin, H.; Wu, S. Y.; Su, X. Y.; Wang, T.; Zhao, W.; Jiang, Y. J.; Ling, H. L.; Meng, A. L.; Zhang, M. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption. Compos. Sci. Technol. 2022, 229, 109673.

    Article  CAS  Google Scholar 

  9. Liu, Y. L.; Tian, C. H.; Wang, F. Y.; Hu, B.; Xu, P.; Han, X. J.; Du, Y. C. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.

    Article  CAS  Google Scholar 

  10. Tian, S. Z.; Li, X. W.; Jiang, J.; Tang, L.; Zhang, H. Q.; Yu, Y.; Zhang, Z. W. Highly sensitive detection of rabbit IgG by electron spin resonance using CuS nanoparticles as probe. Sensor. Actuat. B Chem. 2021, 338, 129835.

    Article  CAS  Google Scholar 

  11. Lv, H.; Kong, Y. F.; Gong, Z. Y.; Zheng, J. Z.; Liu, Y. M.; Wang, G. K. Engineering multifunctional carbon black interface over Mn0.5Cd0.5S nanoparticles/CuS nanotubes heterojunction for boosting photocatalytic hydrogen generation activity. Appl. Surf. Sci. 2022, 604, 154513.

    Article  CAS  Google Scholar 

  12. Wang, Y. C.; Chao, D. L.; Wang, Z. Z.; Ni, J. F.; Li, L. An energetic CuS-Cu battery system based on CuS nanosheet arrays. ACS Nano 2021, 15, 5420–5427.

    Article  CAS  PubMed  Google Scholar 

  13. Sun, Y. Y.; Li, Y.; Sheng, L. M.; Lv, T. L.; Guo, R.; Yang, T. R.; Zhang, Q. S.; Xie, J. Y. Universal synthesis of free-standing metal-sulfides@metal@multi-walled carbon nanotube anode for high-performance sodium ion battery. Chem. Eng. J. 2021, 414, 128732.

    Article  CAS  Google Scholar 

  14. Curcio, A.; De Walle, A. V.; Benassai, E.; Serrano, A.; Luciani, N.; Menguy, N.; Manshian, B. B.; Sargsian, A.; Soenen, S.; Espinosa, A. et al. Massive intracellular remodeling of CuS nanomaterials produces nontoxic bioengineered structures with preserved photothermal potential. ACS Nano 2021, 15, 9782–9795.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, P. B.; Gao, S.; Liu, X. D.; Huang, Y.; He, W. J.; Li, Y. T. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B Eng. 2020, 192, 107992.

    Article  CAS  Google Scholar 

  16. Wang, X. Y.; Wei, S. C.; Yuan, Y.; Li, R. B.; Wang, Y. J.; Liang, Y.; Wang, B.; Dong, C. F. Effect of copper sulfide nanosphere shell on microstructure and microwave absorption properties of cobalt ferrite/carbon nanotube composites. J. Alloys Compd. 2022, 909, 164676.

    Article  CAS  Google Scholar 

  17. Wang, F. Y.; Li, X. Z.; Chen, Z. H.; Yu, W.; Loh, K. P.; Zhong, B.; Shi, Y. M.; Xu, Q. H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocube//graphene composites. Chem. Eng. J. 2021, 405, 126676.

    Article  CAS  Google Scholar 

  18. Wang, S. S.; Jiao, Q. Z.; Shi, Q.; Zhu, H. H.; Feng, T. Y.; Lu, Q. L.; Feng, C. H.; Li, H. S.; Shi, D. X.; Zhao, Y. Synthesis of porous nitrogen-doped graphene decorated by γ-Fe2O3 nanorings for enhancing microwave absorbing performance. Ceram. Int. 2020, 46, 1002–1010.

    Article  CAS  Google Scholar 

  19. Kou, X.; Zhao, Y. P.; Xu, L. J.; Kang, Z. L.; Wang, Y. C.; Zou, Z. Y.; Huang, P.; Wang, Q. F.; Su, G. H.; Yang, Y. et al. Controlled fabrication of core-shell γ-Fe2O3@C-reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interface Sci. 2022, 615, 685–696.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 2005, 117, 2842–2845.

    Article  ADS  Google Scholar 

  21. Lin, J. D.; Tao, F. F.; Wang, L. X.; Chen, L. Z.; Ying, Y. Q.; Zhang, L. Q.; Liu, H. L.; Xia, M. Y. Solvothermal synthesis of sphere-like CuS microcrystals and improvement as nonenzymatic glucose sensor. J. Mater. Sci. 2013, 48, 5509–5516.

    Article  ADS  CAS  Google Scholar 

  22. Liu, J. L.; Liang, H. S.; Wu, H. J. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105760.

    Article  CAS  Google Scholar 

  23. Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

    Article  CAS  Google Scholar 

  24. Wang, P. Q.; Jia, C. C.; Huang, Y.; Duan, X. F. Van der waals heterostructures by design: From 1D and 2D to 3D. Matter 2021, 4, 552–581.

    Article  CAS  Google Scholar 

  25. Xiao, Z. R.; Ji, S.; Li, Y. T.; Hou, F.; Zhang, H. C.; Zhang, X. W.; Wang, L.; Li, G. Z. Tuning oxygen vacancies on mesoporous ceria nanorods by metal doping: Controllable magnetic property. Appl. Surf. Sci. 2018, 455, 1037–1044.

    Article  ADS  CAS  Google Scholar 

  26. Yuan, M. W.; Sun, Z. M.; Yang, H.; Wang, D.; Liu, Q. M.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Chen, S. W. Self-catalyzed rechargeable lithium-air battery by in situ metal ion doping of discharge products: A combined theoretical and experimental study. Energy Environ. Mater. 2023, 6, e12258.

    Article  CAS  Google Scholar 

  27. Ding, S. Q.; Liu, S.; Li, J. J.; Wu, L.; Ma, Z. F.; Yuan, X. X. Multifunctional catalyst CuS for nonaqueous rechargeable lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2021, 13, 50065–50075.

    Article  CAS  PubMed  Google Scholar 

  28. Shi, G. D.; Fan, Z. X.; Du, L. L.; Fu, X. L.; Dong, C. M.; Xie, W.; Zhao, D. B.; Wang, M.; Yuan, M. J. In situ construction of graphdiyne/CuS heterostructures for efficient hydrogen evolution reaction. Mater. Chem. Front. 2019, 3, 821–828.

    Article  CAS  Google Scholar 

  29. Zhang, Q.; Hu, Y. B.; Wang, J.; Pan, F. S. Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries. J. Magnes. Alloys 2023, 11, 192–200.

    Article  CAS  Google Scholar 

  30. Liu, H. Q.; He, Y. N.; Zhang, H.; Cao, K. Z.; Wang, S. D.; Jiang, Y.; Jing, Q. S.; Jiao, L. F. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem. Eng. J. 2021, 425, 130548.

    Article  CAS  Google Scholar 

  31. Li, J. E.; Luo, S.; Zhang, B.; Lu, J. L.; Liu, W. L.; Zeng, Q. X.; Wan, J.; Han, X. Y.; Hu, C. G. High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective properties of cathode and anode materials. Nano Energy 2021, 79, 105410.

    Article  CAS  Google Scholar 

  32. Xu, J. S.; Lu, N.; Yuan, M. W.; Sun, G. B. Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced. Nano Res. 2023, 16, 5676–5684.

    Article  ADS  CAS  Google Scholar 

  33. Ye, K. H.; Li, K. S.; Lu, Y. R.; Guo, Z. J.; Ni, N.; Liu, H.; Huang, Y. C.; Ji, H. B.; Wang, P. S. An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC Trends Anal. Chem. 2019, 116, 102–108.

    Article  CAS  Google Scholar 

  34. Wang, Z. Y.; Miao, J. Y.; Zhang, H. X.; Wang, D.; Sun, J. B. Hollow cubic ZnSnO3 with abundant oxygen vacancies for H2S gas sensing. J. Hazard. Mater. 2020, 391, 122226.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, S. Q.; Wen, H. R.; Ying, G.; Zhu, Y. W.; Fu, X. Z.; Sun, R.; Wong, C. P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy 2018, 44, 7–14.

    Article  Google Scholar 

  36. Li, M. C.; Qian, Y. T.; Du, J. M.; Wu, H. R.; Zhang, L. Y.; Li, G.; Li, K. D.; Wang, W. M.; Kang, D. J. CuS nanosheets decorated with CoS2 nanoparticles as an efficient electrocatalyst for enhanced hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2019, 7, 14016–14022.

    Article  CAS  Google Scholar 

  37. Xu, X.; Guo, Y.; Bloom, B. P.; Wei, J. J.; Li, H. Y.; Li, H. L.; Du, Y. K.; Zeng, Z.; Li, L. Q.; Waldeck, D. H. Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS Nano 2020, 14, 17704–17712.

    Article  CAS  PubMed  Google Scholar 

  38. Xie, Y. X.; Guo, Y. Y.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Meng, A. L.; Zhang, M.; Li, Z. J. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. 2023, 457, 141205.

    Article  CAS  Google Scholar 

  39. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Xie, Y. J.; Zhang, R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 2015, 3, 10345–10352.

    Article  CAS  Google Scholar 

  40. Guo, C. Y.; Xia, F. Y.; Wang, Z.; Zhang, L.; Xi, L.; Zuo, Y. L. Flowerlike iron oxide nanostructures and their application in microwave absorption. J. Alloys Compd. 2015, 631, 183–191.

    Article  CAS  Google Scholar 

  41. Cui, G. Z.; Wang, L. B.; Li, L.; Xie, W.; Gu, G. X. Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog. Nat. Sci. Mater. Int. 2020, 30, 343–351.

    Article  CAS  Google Scholar 

  42. Zhang, Y.; Dai, F.; Mouldi, A.; Bouallegue, B.; Akhtar, M. N. Tunable microwave absorption features in bi-layer absorber based on mesoporous CuS micro-particle with 3D hierarchical structure and nanosphere like NiCo2O4. Ceram. Int. 2022, 48, 9146–9156.

    Article  CAS  Google Scholar 

  43. Zhang, B.; Lin, S. F.; Zhang, J. J.; Li, X. P.; Sun, X. D. Facile synthesis of sandwich-like rGO/CuS/polypyrrole nanoarchitectures for efficient electromagnetic absorption. Materials 2020, 13, 446.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ji, S. N.; Li, C. P.; Zhang, Z. M.; Jiang, X. H.; Yu, L. M. Hollow γ-Fe2O3@Poly(3,4-ethylenedioxythiophene) versus γ-Fe2O3@SiO2@Poly(3,4-ethylenedioxythiophene) core–shell structures for highly effective microwave absorption. Synth. Met. 2018, 239, 59–65.

    Article  CAS  Google Scholar 

  45. Li, C. P.; Ji, S. N.; Jiang, X. H.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Microwave absorption by watermelon-like microspheres composed of γ-Fe2O3, microporous silica and polypyrrole. J. Mater. Sci. 2018, 53, 9635–9649.

    Article  ADS  CAS  Google Scholar 

  46. Ma, W. J.; Tang, C. H.; He, P.; Wu, X. H.; Cui, Z. K.; Lin, S. L.; Liu, X. Y.; Zhuang, Q. X. Morphology-controlled fabrication strategy of hollow mesoporous carbon spheres@f-Fe2O3 for microwave absorption and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 34985–34996.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, N.; Huang, Y.; Wang, M. Y. Synthesis of graphene/thorns-like polyaniline/α-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber. J. Colloid Interface Sci. 2018, 530, 212–222.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Liu, Y.; Fu, Y. W.; Liu, L.; Li, W.; Guan, J. G.; Tong, G. X. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 2018, 10, 16511–16520.

    Article  CAS  PubMed  Google Scholar 

  49. Tayebi Pak, A.; Masoudpanah, S. M.; Adeli, M.; Jazirehpour, M. Hierarchical porous Fe3O4/RGO nanocomposite powders as high performance microwave absorbers. J. Mater. Res. Technol. 2021, 13, 548–560.

    Article  CAS  Google Scholar 

  50. Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

    Article  CAS  Google Scholar 

  51. Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

    Article  ADS  CAS  Google Scholar 

  52. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  53. Cheng, J.; Jiang, H. J.; Cai, L.; Pan, F.; Shi, Y. Y.; Wang, X.; Zhang, X.; Lu, S. D.; Yang, Y.; Li, L. X. et al. Porous N-doped C/VB-group VS2 composites derived from perishable garbage to synergistically solve the environmental and electromagnetic pollution. Chem. Eng. J. 2023, 457, 141208.

    Article  CAS  Google Scholar 

  54. Xiong, J.; Xiang, Z.; Deng, B. W.; Wu, M. C.; Yu, L. Z.; Liu, Z. C.; Cui, E. B.; Pan, F.; Liu, R.; Lu, W. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 2020, 513, 145778.

    Article  CAS  Google Scholar 

  55. Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

    Article  CAS  Google Scholar 

  56. Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

    Article  CAS  Google Scholar 

  57. Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

    Article  ADS  Google Scholar 

  58. Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

    Article  CAS  Google Scholar 

  59. Wu, N. N.; Liu, C.; Xu, D. M.; Liu, J. R.; Liu, W.; Shao, Q.; Guo, Z. H. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem. Eng. 2018, 6, 12471–12480.

    Article  CAS  Google Scholar 

  60. Sun, Y. C.; Cui, W. Y.; Li, J. L.; Wu, J. Z. In-situ growth strategy to fabrication of MWCNTs/Fe3O4 with controllable interface polarization intensity and wide band electromagnetic absorption performance. J. Alloys Compd. 2019, 770, 67–75.

    Article  CAS  Google Scholar 

  61. Shu, R. W.; Li, X. H.; Tian, K. H.; Shi, J. J. Fabrication of bimetallic metal-organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers. Compos. Part B: Eng. 2022, 228, 109423.

    Article  CAS  Google Scholar 

  62. Chen, J. B.; Zheng, J.; Huang, Q. Q.; Wang, F.; Ji, G. B. Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 36182–36189.

    Article  CAS  PubMed  Google Scholar 

  63. Shu, R. W.; Li, X. H.; Shi, J. J. Construction of porous carbon-based magnetic composites derived from iron zinc bimetallic metal-organic framework as broadband and high-efficiency electromagnetic wave absorbers. J. Colloid Interface Sci. 2023, 633, 43–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22271018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genban Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Xu, J., Yuan, M. et al. Flower-like CuS/γ-Fe2O3 van der Waals heterostructures with high-efficient electromagnetic wave absorption. Nano Res. 17, 3324–3333 (2024). https://doi.org/10.1007/s12274-023-6058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6058-3

Keywords

Navigation