Skip to main content
Log in

Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electromagnetic wave absorption materials are widely used in electronic equipment and military fields. However, high cost and complex preparation processes become a major obstacle in promoting popularization in the civil field. To solve the problems above, researchers have made great efforts to develop Fe-based carbon composites. However, most of the typical composites require a high filling ratio while achieving excellent properties. Therefore, in this study, carbon nanofibers (CNFs) combined with the hollow rice-grained α-Fe2O3 nanoparticles were prepared by the in-situ transformation method. The rational microstructure design provided a solution for reducing the filling ratio, optimizing impedance matching, and improving electromagnetic wave absorption performance. The strong reflection loss value (−38.1 dB) and broad effective absorption bandwidth (4.6 GHz) for Fe2O3/CNFs composites were achieved with a low filling ratio (20 wt.%), and the analysis of electromagnetic parameters validated that the microstructure of Fe2O3/CNFs plays a crucial role in the performance improvement. With the optimized impedance matching and simple preparation method, Fe2O3/CNFs have broad application prospects in electromagnetic wave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts, S.; Vermeeren, G.; Van Den Bossche, M.; Aminzadeh, R.; Verloock, L.; Thielens, A.; Leroux, P.; Bergs, J.; Braem, B.; Philippron, A. et al. Lessons learned from a distributed RF-EMF sensor network. Sensors 2022, 22, 1715.

    Google Scholar 

  2. Romeo, S.; Zeni, O.; Scarfi, M. R.; Poeta, L.; Lioi, M. B.; Sannino, A. Radiofrequency electromagnetic field exposure and apoptosis: A scoping review of in vitro studies on mammalian cells. Int. J. Mol. Sci. 2022, 23, 2322.

    CAS  Google Scholar 

  3. Yang, H. H.; Zhang, Y. Y.; Wu, X. W.; Gan, P.; Luo, X. L.; Zhong, S. X.; Zuo, W. Q. Effects of acute exposure to 3500 MHz (5G) radiofrequency electromagnetic radiation on anxiety-like behavior and the auditory cortex in guinea pigs. Bioelectromagnetics 2022, 43, 106–118.

    Google Scholar 

  4. Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.

    CAS  Google Scholar 

  5. Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

    CAS  Google Scholar 

  6. Wang, Z.; Cheng, Z.; Fang, C. Q.; Hou, X. L.; Xie, L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105956.

    CAS  Google Scholar 

  7. Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.

    CAS  Google Scholar 

  8. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    CAS  Google Scholar 

  9. Jin, C.; Chen, J. H.; Zhang, B. C.; Kong, L. W.; An, S. N.; He, Z. S.; Liu, J. L. Low-cost mmwave metallic waveguide based on multilayer integrated vertical-EBG structure and its application to slot array antenna design. IEEE Trans. Antennas Propag. 2022, 70, 2205–2213.

    Google Scholar 

  10. Li, W.; Chen, X. Q.; Zhang, Z. L.; Wu, Z.; Yang, L.; Zou, Y. H. Ultralight and low-cost structural absorbers with enhanced microwave absorption performance based on sustainable waste biomass. IEEE Trans. Antennas Propag. 2022, 70, 401–409.

    Google Scholar 

  11. Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of urchin-like Fe/α-Fe2O3 composite synthesized by a simple thermal oxidation. Integr. Ferroelectr. 2014, 152, 137–143.

    CAS  Google Scholar 

  12. Xie, G. X.; Cheng, G. T.; Lv, T. Y.; Ma, J. Q.; Zhang, T. T.; Zhang, Y. R.; Yu, Y.; Jiang, L. L.; Wang, X. X.; Long, Y. Z. Electromagnetic properties and microwave absorption of electrospun Fe2O3-carbon composite nanofibers with particle-nanorod structure. Nano 2021, 16, 2150143.

    CAS  Google Scholar 

  13. Zhang, H.; Xu, J.; Wang, S.; Liu, Q.; Kong, X. Constructing holey γ-Fe2O3 nanosheets with enhanced capability for microwave absorption. Mater. Today Chem. 2022, 23, 100690.

    CAS  Google Scholar 

  14. Cheng, Y.; Chen, P.; Dong, S. T.; Zhang, Z. Y.; Guo, Y. H. Development of a porous iron-based magnetic absorber with enhanced electromagnetic absorption performance. J. Mater. Sci. Mater. Electron. 2021, 32, 6799–6809.

    CAS  Google Scholar 

  15. Fang, Y.; Wang, W. J.; Wang, S.; Hou, X. W.; Xue, W. D.; Zhao, R. A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: A case study with microwave-reduced graphene oxide. Chem. Eng. J. 2022, 439, 135672.

    CAS  Google Scholar 

  16. Li, S. S.; Tang, X. W.; Zhang, Y. W.; Lan, Q. Q.; Hu, Z. W.; Li, L.; Zhang, N.; Ma, P. M.; Dong, W. F.; Tjiu, W. et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2022, 14, 8297–8310.

    CAS  Google Scholar 

  17. Tian, K. H.; Huang, Y. N.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Chen, Z. H.; Li, C.; Liu, X. W. In-situ synthesis of graphite carbon nitride nanotubes/cobalt@carbon with castor-fruit-like structure as high-efficiency electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 620, 454–464.

    CAS  Google Scholar 

  18. Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.

    CAS  Google Scholar 

  19. Liu, X. D.; Huang, Y.; Zhao, X. X.; Yan, J.; Zong, M. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption. J. Colloid Interf Sci. 2022, 616, 347–359.

    CAS  Google Scholar 

  20. Ma, M. L.; Liao, Z. J.; Su, X. W.; Zheng, Q. X.; Liu, Y. Y.; Wang, Y.; Ma, Y.; Wan, F. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 608, 2203–2212.

    CAS  Google Scholar 

  21. Zhao, K.; Ye, F.; Cheng, L. F.; Liu, R. Z.; Liang, J.; Li, X. Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Appl. Surf. Sci. 2022, 591, 153105.

    CAS  Google Scholar 

  22. Wang, R.; Sun, Q. L.; Gu, H.; Ye, W.; Yuan, G. Q.; Yang, Z. T.; Long, X. Y. Preparation and electromagnetic-wave-absorption properties of a nitrogen-doped carbon-supported iron(II, III) oxide composite. J. Mater. Sci. Mater. Electron. 2022, 33, 1383–1394.

    CAS  Google Scholar 

  23. Shu, Y.; Zhao, T. K.; Li, X. H.; Yang, L.; Cao, S. Q.; Ahmad, A.; Jiang, T.; Luo, H. J.; Jing, Z. M.; Ui Ain, N. Surface plasmon resonance-enhanced dielectric polarization endows coral-like Co@CoO nanostructures with good electromagnetic wave absorption performance. Appl. Surf. Sci. 2022, 585, 152704.

    CAS  Google Scholar 

  24. Guo, R.; Zheng, Q.; Wang, L. J.; Fan, Y. C.; Jiang, W. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 106, 108–117.

    CAS  Google Scholar 

  25. Li, N.; Cao, M. H.; Hu, C. W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers. J. Mater. Chem. 2012, 22, 18426–18432.

    CAS  Google Scholar 

  26. Li, N.; Hu, C. W.; Cao, M. H. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 2013, 15, 7685–7689.

    CAS  Google Scholar 

  27. Kong, B.; Liu, R.; Guo, J. H.; Lu, L.; Zhou, Q.; Zhao, Y. J. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 2023, 19, 328–347.

    CAS  Google Scholar 

  28. Al-Dhahebi, A. M.; Ling, J.; Krishnan, S. G.; Yousefzadeh, M.; Elumalai, N. K.; Saheed, M. S. M.; Ramakrishna, S.; Jose, R. Electrospinning research and products: The road and the way forward. Appl. Phys. Rev. 2022, 9, 011319.

    CAS  Google Scholar 

  29. Luo, H. L.; Zhang, Y.; Yang, Z. W.; Xiong, G. Y.; Wan, Y. Z. Constructing superior carbon-nanofiber-based composite microwave absorbers by engineering dispersion and loading of Fe3O4 nanoparticles on three-dimensional carbon nanofibers derived from bacterial cellulose. Mater. Chem. Phys. 2017, 201, 130–138.

    CAS  Google Scholar 

  30. Liu, H.; Li, Y. J.; Yuan, M. W.; Sun, G. B.; Liao, Q. L.; Zhang, Y. Solid and macroporous Fe3C/N-C nanofibers with enhanced electromagnetic wave absorbability. Sci. Rep. 2018, 8, 16832.

    Google Scholar 

  31. Li, Y. J.; Yuan, M. W.; Liu, H. H.; Sun, G. B. In situ synthesis of CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers with enhanced electromagnetic performance. J. Alloys Compd. 2020, 826, 154147.

    CAS  Google Scholar 

  32. Basavaraja, S.; Vijayanand, H.; Venkataraman, A.; Deshpande, U. P.; Shripathi, T. Characterization of γ-Fe2O3 nanoparticles synthesized through self-propagating combustion route. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2007, 37, 409–412.

    CAS  Google Scholar 

  33. Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

    CAS  Google Scholar 

  34. Zhang, S. S.; Deng, P.; Yu, L. L.; Ni, Y.; Ling, C.; Zhu, Z. Y.; Liu, R. J. Fabrication and formation mechanism of hollow-structure supermagnetic α-Fe2O3/Fe3O4 heterogeneous nanospindles. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2492–2501.

    CAS  Google Scholar 

  35. Uhm, Y. R.; Kim, W. W.; Rhee, C. K. A study of synthesis and phase transition of nanofibrous Fe2O3 derived from hydrolysis of Fe nanopowders. Scr. Mater. 2004, 50, 561–564.

    CAS  Google Scholar 

  36. Liu, H. H.; Li, Y. J.; Yuan, M. W.; Sun, G. B.; Li, H. F.; Ma, S. L.; Liao, Q. L.; Zhang, Y. In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl. Mater. Interfaces 2018, 10, 22591–22601.

    CAS  Google Scholar 

  37. Min, W. X.; Xu, D. W.; Chen, P.; Chen, G. Z.; Yu, Q.; Qiu, H. F.; Zhu, X. Y. Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2021, 32, 8000–8016.

    CAS  Google Scholar 

  38. Xu, C.; Jin, D. Discussion on heat treatment of FeOOH. Inf. Rec. Mater. 1987, 3, 10–13,17.

    Google Scholar 

  39. Han, Y. H.; Yuan, J.; Zhu, Y. H.; Wang, Q. Q.; Li, L.; Cao, M. S. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754.

    CAS  Google Scholar 

  40. Ji, J. D.; Huang, Y.; Yin, J. H.; Zhao, X. C.; Cheng, X. W.; He, S. L.; Li, X.; He, J.; Liu, J. P. Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites. ACS Appl. Nano Mater. 2018, 1, 3935–3944.

    CAS  Google Scholar 

  41. Wang, X. Y.; Huang, J. G.; Feng, H.; Li, J. F.; Pu, Z. D.; Yin, X. C. Facile preparation of the dendritic Fe3O4 with a core—shell microstructure in SiO2-B2O3-Al2O3-CaO-Fe2O3 glass-ceramic system for enhanced microwave absorbing performance. J. Alloys Compd. 2021, 877, 160147.

    CAS  Google Scholar 

  42. Zhang, H.; Xie, A. J.; Wang, C. P.; Wang, H. S.; Shen, Y. H.; Tian, X. Y. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552.

    CAS  Google Scholar 

  43. Guo, C. Y.; Xia, F. Y.; Wang, Z.; Zhang, L.; Xi, L.; Zuo, Y. L. Flowerlike iron oxide nanostructures and their application in microwave absorption. J. Alloys Compd. 2015, 631, 183–191.

    CAS  Google Scholar 

  44. Quan, B.; Xu, G. Y.; Li, D. R.; Liu, W.; Ji, G. B.; Du, Y. W. Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response. J. Colloid Interface Sci. 2017, 498, 161–169.

    CAS  Google Scholar 

  45. Ma, W. J.; Tang, C. H.; He, P.; Wu, X. H.; Cui, Z. K.; Lin, S.; Liu, X. Y.; Zhuang, Q. X. Morphology-controlled fabrication strategy of hollow mesoporous carbon spheres@f-Fe2O3 for microwave absorption and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 34985–34996.

    CAS  Google Scholar 

  46. Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

    CAS  Google Scholar 

  47. Hu, H. H.; Zheng, Y.; Ren, K.; Wang, J. Y.; Zhang, Y. H.; Zhang, X. F.; Che, R. C.; Qin, G. W.; Jiang, Y. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale 2021, 13, 2324–2332.

    CAS  Google Scholar 

  48. Jia, Z. R.; Wang, B. B.; Feng, A. L.; Liu, J. J.; Zhang, M.; Huang, Z. Y.; Wu, G. L. Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J. Alloys Compd. 2019, 799, 216–223.

    CAS  Google Scholar 

  49. Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon 2019, 155, 298–308.

    CAS  Google Scholar 

  50. Chen, W. J.; Zhao, H.; Xu, B. B.; Jiang, Q. R.; Bao, S. S.; Jiang, Z. Y. Rational construction and microwave absorption properties of porous FeOx/Fe/C composites. J. Alloys Compd. 2020, 829, 154519.

    CAS  Google Scholar 

  51. Zhou, J. H.; He, J. P.; Wang, T.; Li, G. X.; Guo, Y. X.; Zhao, J. Q.; Ma, Y. O. Design of mesostructured gamma-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J. Alloys Compd. 2011, 509, 8211–8214.

    CAS  Google Scholar 

  52. Fu, H. H.; Guo, Y.; Yu, J.; Shen, Z.; Zhao, J.; Xie, Y.; Ling, Y.; Ouyang, S.; Li, S. Q.; Zhang, W. Tuning the shell thickness of core—shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin. Chem. Lett. 2022, 33, 957–962.

    CAS  Google Scholar 

  53. Wang, L.; Zhang, J.; Wang, M.; Che, R. C. Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 11167–11176.

    CAS  Google Scholar 

  54. Chen, Y.; Liu, X.; Mao, X.; Zhuang, Q.; Xie, Z.; Han, Z. γ-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale 2014, 6, 6440–6447.

    CAS  Google Scholar 

  55. Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. J. Alloys Compd. 2020, 843, 156052.

    Google Scholar 

  56. Zhong, B.; Wang, C. J.; Yu, Y. L.; Xia, L.; Wen, G. W. Facile fabrication of carbon microspheres decorated with B(OH)3 and α-Fe2O3 nanoparticles: Superior microwave absorption. J. Colloid Interface Sci. 2017, 505, 402–409.

    CAS  Google Scholar 

  57. Zhong, B.; Wang, C. J.; Wen, G. W.; Yu, Y. L.; Xia, L. Facile fabrication of boron and nitrogen co-doped carbon@Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Compos. Part B Eng. 2018, 132, 141–150.

    CAS  Google Scholar 

  58. Kou, X.; Zhao, Y. P.; Xu, L. J.; Kang, Z. L.; Wang, Y. C.; Zou, Z. Y.; Huang, P.; Wang, Q. F.; Su, G. H.; Yang, Y. et al. Controlled fabrication of core—shell γ-Fe2O3@C-reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interface Sci. 2022, 615, 685–696.

    CAS  Google Scholar 

  59. Wang, S.; Jiao, Q.; Liu, X.; Xu, Y.; Shi, Q.; Yue, S.; Zhao, Y.; Liu, H.; Feng, C.; Shi, D. Controllable synthesis of γ-Fe2O3 nanotube/porous rGO composites and their enhanced microwave absorption properties. ACS Sustainable Chem. Eng. 2019 7, 7004–7013.

    CAS  Google Scholar 

  60. Yu, X. F.; Zhang, Y.; Wang, L.; Xing, L. S.; You, W. B.; Liu, J. W.; Chen, G. Y.; Ding, G. Z.; Ding, J. Z.; Liu, X. H. et al. Improved microwave absorption performance of a multi-dimensional Fe2O3/CNTCM@CN assembly achieved by enhanced dielectric relaxation. J. Mater. Chem. C 2020, 8, 5715–5726.

    CAS  Google Scholar 

  61. Qiao, J.; Zhang, X.; Xu, D. M.; Kong, L. X.; Lv, L. F.; Yang, F.; Wang, F. L.; Liu, W.; Liu, J. R. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 2020, 380, 122591.

    CAS  Google Scholar 

  62. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    CAS  Google Scholar 

  63. Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.

    CAS  Google Scholar 

  64. Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.

    CAS  Google Scholar 

  65. Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (No. 21771024 and 22271018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genban Sun.

Electronic supplementary material

12274_2022_5178_MOESM1_ESM.pdf

Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lu, N., Yuan, M. et al. Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced. Nano Res. 16, 5676–5684 (2023). https://doi.org/10.1007/s12274-022-5178-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5178-5

Keywords

Navigation