Skip to main content
Log in

Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-based electromagnetic wave absorbing materials (absorbers) adhered with metallic sulfide nanoparticles of good electrical conductivity attract increasing researchers’ attention. In this study, on the basis of carbon fiber (Cf)@Fe3O4 nanocomposites obtained by the electrostatic spinning and reflow method, Cf@FeS2 nanocomposite was successfully prepared during a further hydrothermal process. The products exhibit excellent electromagnetic wave absorption performances with a minimum reflection loss (RLmin) of −54.11 dB at 2.13 mm matching thickness. At the same time, the optimal effective absorption bandwidth (EAB) value of 6.04 GHz at a thickness of 1.98 mm covers the whole Ku band, suggesting its excellent electromagnetic wave absorption performances. In addition, the interlaced network structure constructed by carbon fiber, outstanding conductivity of FeS2 nanoparticles, and interfacial polarization from hetero-structure play significant parts in enhancing the electromagnetic parameters and absorption performances. All these results suggest that the Cf@FeS2 nanocomposites can be taken as a new electromagnetic wave-absorbing material under their low density, simple craft, and strong absorption characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    CAS  Google Scholar 

  2. Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    CAS  Google Scholar 

  3. Chen, X. L.; Jia, Z. R.; Feng, A. L.; Wang, B. B.; Tong, X. H.; Zhang, C. H.; Wu, G. L. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interfaces Sci. 2019, 553, 465–474.

    CAS  Google Scholar 

  4. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    CAS  Google Scholar 

  5. Wang, J.; Wu, X. Y.; Wang, Y. J.; Zhao, W. Y.; Zhao, Y.; Zhou, M.; Wu, Y.; Ji, G. B. Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nanomicro Lett. 2022, 15, 11.

    Google Scholar 

  6. Li, Z. J.; Wang, X. H.; Ling, H. L.; Lin, H.; Wang, T.; Zhang, M.; Meng, A. L.; Li, Q. D. Electromagnetic wave absorption properties of SiC@SiO2 nanoparticles fabricated by a catalyst-free precursor pyrolysis method. J. Alloys Compd. 2020, 830, 154643.

    CAS  Google Scholar 

  7. Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nanomicro Lett. 2022, 14, 89.

    Google Scholar 

  8. Liu, Z. X.; Li, C. C.; Zhang, X. F.; Zhou, B. Z.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Jiang, L.; Jerrams, S.; Zhou, F. L. Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chem. Eng. 2022, 10, 8788–8798.

    CAS  Google Scholar 

  9. Gui, X. C.; Wang, K. L.; Wei, J. Q.; Lü, R. T.; Shu, Q. K.; Jia, Y.; Wang, C.; Zhu, H. W.; Wu, D. H. Microwave absorbing properties and magnetic properties of different carbon nanotubes. Sci. China Ser. E Technol. Sci. 2009, 52, 227–231.

    CAS  Google Scholar 

  10. Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

    CAS  Google Scholar 

  11. Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. B: Eng. 2018, 137, 260–277.

    CAS  Google Scholar 

  12. Cui, H. P.; Zhao, P. F.; Hu, B. X.; Long, A. C.; He, S. M.; Chen, G. J.; Liao, L. S.; Liao, J. H.; Zhao, Y. F. Sustainable microwave absorbing material based on macadamia nutshell derived porous carbon. Nano 2022, 17, 2250010.

    CAS  Google Scholar 

  13. Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

    CAS  Google Scholar 

  14. Li, G.; Xie, T. S.; Yang, S. L.; Jin, J. H.; Jiang, J. M. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 2012, 116, 9196–9201.

    CAS  Google Scholar 

  15. Huang, L. X.; Duan, Y. P.; Shi, Y. P.; Ma, X. R.; Pang, H. F.; Zeng, Q. W.; Che, R. C. Chiral asymmetric polarizations generated by bioinspired helical carbon fibers to induce broadband microwave absorption and multispectral photonic manipulation. Adv. Opt. Mater. 2022, 10, 2200249.

    CAS  Google Scholar 

  16. Hu, Z.; Jin, S. L.; Lu, W. Z.; Tang, S.; Guo, C. T.; Lu, Y. G.; Zhang, R.; Liu, Y.; Jin, M. L. Effect of carbonization temperature on microwave absorbing properties of polyacrylonitrile-based carbon fibers. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 637–641.

    CAS  Google Scholar 

  17. Wang, W. W.; Yi, L. T.; Zheng, Y. Z.; Lu, J.; Jiang, A. S.; Wang, D. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Comp. Commun. 2023, 37, 101455.

    Google Scholar 

  18. Xie, Y. X.; Guo. Y. Y.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Meng, A. L.; Zhang, M.; Li, Z. J. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. 2023, 457, 141205.

    CAS  Google Scholar 

  19. Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nanomicro Lett. 2022, 14, 224.

    CAS  Google Scholar 

  20. Ning, M. Q.; Li, J. B.; Kuang, B. Y.; Wang, C. Z.; Su, D. Z.; Zhao, Y. J.; Jin, H. B.; Cao, M. S. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 2018, 447, 244–253.

    CAS  Google Scholar 

  21. Han, B. H.; Chu, W. L.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Wang, Y. H.; Zhao, H. H.; Du, Y. C. Dual functions of glucose induced composition-controllable Co/C microspheres as highperformance microwave absorbing materials. Cabbon 2020, 168, 404–414.

    CAS  Google Scholar 

  22. Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Wu, W.; Liu, X. H.; Xu, B. H.; Wu, G. L. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 2021, 87, 120–132.

    CAS  Google Scholar 

  23. Park, J. H.; Lee, S.; Ro, J. C.; Suh, S. J. Yolk-shell Fe-Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. Appl. Surf. Sci. 2022, 573, 151469.

    CAS  Google Scholar 

  24. Ye, W.; Sun, Q. L.; Zhang, G. Y. Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites. Ceram. Int. 2019, 45, 5093–5099.

    CAS  Google Scholar 

  25. Qiang, C. W.; Xu, J. C.; Zhang, Z. Q.; Tian, L. L.; Xiao, S. T.; Liu, Y.; Xu, P. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 2010, 506, 93–97.

    CAS  Google Scholar 

  26. Sun, Q. L.; Sun, L.; Cai, Y. Y.; Ji, T.; Zhang, G. Y. Activated carbon fiber/Fe3O4 composite with enhanced electromagnetic wave absorption properties. RSC Adv. 2018, 8, 35337–35342.

    CAS  Google Scholar 

  27. Zhou, P. P.; Wang, X. K.; Wang, L. X.; Zhang, J.; Song, Z.; Qiu, X.; Yu, M. X.; Zhang, Q. T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance. J. Alloys Compd. 2019, 805, 1071–1080.

    CAS  Google Scholar 

  28. Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

    CAS  Google Scholar 

  29. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  30. Liu, X. X.; Liu, L. M.; Yan, W. W.; Wang, Y. F.; Huang, C. F.; Wang, Z. J. Hierarchical Fe3O4@FeS2 nanocomposite as high-specific-capacitance electrode material for supercapacitors. Energy Technol. 2020, 8, 2000544.

    Google Scholar 

  31. Xu, J.; Cui, Y. H.; Wang, J. Q.; Fan, Y. H.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem. Eng. J. 2020, 401, 126027.

    CAS  Google Scholar 

  32. Gou, G. J.; Meng, F. B.; Wang, H. G.; Jiang, M.; Wei, W.; Zhou, Z. W. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423–1429.

    CAS  Google Scholar 

  33. Zhou, X. F.; Zhang, C. H.; Zhang, M.; Feng, A. L.; Qu, S. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105627.

    CAS  Google Scholar 

  34. Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

    CAS  Google Scholar 

  35. Chen, G. Z.; Xu, D. W.; Chen, P.; Guo, X.; Yu, Q.; Qiu, H. F. Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. J. Magn. Magn. Mater. 2021, 532, 167990.

    CAS  Google Scholar 

  36. Xu, J.; Liu, Z. H.; Li, Q.; Wang, Y. B.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. J. Colloid Interface Sci. 2021, 601, 397–410.

    CAS  Google Scholar 

  37. Jin, Y. H.; Luo, X.; Zhang, J. L.; Yu, Y. P.; An, J.; Zhang, J. F.; Zhao, D. L.; Gao, K. W. Electro-magnetic wave absorbing properties study of nano-composites based on Fe3O4. Sci. Adv. Mater. 2021, 13, 447–454.

    Google Scholar 

  38. Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

    CAS  Google Scholar 

  39. Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 2022, 224, 109445.

    CAS  Google Scholar 

  40. Yang, N.; Luo, Z. X.; Chen, S. C.; Wu, G.; Wang, Y. Z. Fe3O4 nanoparticle/N-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 2020, 12, 18952–18963.

    CAS  Google Scholar 

  41. Zhan, Y. Q.; Long, Z. H.; Wan, X. Y.; Zhang, J. M.; He, S. J.; He, Y. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 2018, 444, 710–720.

    CAS  Google Scholar 

  42. Zhang, K. C.; Zhang, Q.; Gao, X. B.; Chen, X. F.; Wang, Y.; Li, W. C.; Wu, J. Y. Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 706–716.

    CAS  Google Scholar 

  43. Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In-situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B: Eng. 2020, 199, 108261.

    CAS  Google Scholar 

  44. Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

    CAS  Google Scholar 

  45. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    CAS  Google Scholar 

  46. Zhang, Z. Y.; Zhao, Y. H.; Li, Z.; Zhang, L. J.; Liu, Z. X.; Long, Z. K.; Li, Y. J.; Liu, Y.; Fan, R. H.; Sun, K. et al. Synthesis of carbon/SiO2 core- sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 513–524.

    CAS  Google Scholar 

  47. Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

    CAS  Google Scholar 

  48. Wu, N. N.; Zhao, B. B.; Liu, J. Y.; Li, Y. L.; Chen, Y. B.; Chen, L.; Wang, M.; Guo, Z. H. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021, 4, 707–715.

    CAS  Google Scholar 

  49. Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

    CAS  Google Scholar 

  50. Ye, Z. W.; Wang, K. J.; Li, X. Q.; Yang, J. J. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J. Alloys Compd. 2022, 893, 162396.

    CAS  Google Scholar 

  51. Cheng, T. T.; Guo, Y. Y.; Xie, Y. X.; Zhao, L. B.; Wang, T.; Meng, A. L.; Li, Z. J.; Zhang, M. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 2023, 206, 181–191.

    CAS  Google Scholar 

  52. Zhang, M.; Li, Z. J.; Wang, T.; Ding, S. Q.; Song, G. Y.; Zhao, J.; Meng, A. L.; Yu, H. Y.; Li, Q. D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 2019, 362, 619–627.

    CAS  Google Scholar 

  53. Zhang, K. C.; Gai, X. Q.; Zhang, X. G.; Chen, X. F.; Li, H. X.; Zhao, X.; Chen, H.; Li, J. B. Preparation of nitrogen and sulfur co-doped graphene/Fe3O4/C nanocomposite and study on the absorbing properties. J. Mater. Sci. Mater. Electron. 2021, 32, 8807–8818.

    CAS  Google Scholar 

  54. Fan, M. H.; Zhang, L. L.; Li, K. Q.; Liu, J. W.; Zheng, Y. N.; Zhang, L.; Song, S. Y.; Qiao, Z. A. FeS2@C core–shell nanochains as efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater. 2019, 2, 3889–3896.

    CAS  Google Scholar 

  55. Pan, K. F.; Zhai, Y. Y.; Zhang, J. W.; Yu, K. FeS2/C nanowires as an effective catalyst for oxygen evolution reaction by electrolytic water splitting. Materials 2019, 12, 3364.

    CAS  Google Scholar 

  56. Lu, Z. X.; Wang, N. N.; Zhang, Y. H.; Xue, P.; Guo, M. Q.; Tang, B.; Xu, X.; Wang, W. X.; Bai, Z. C.; Dou, S. X. Metal-organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties. ACS Appl. Energy Mater. 2018, 1, 6234–6241.

    CAS  Google Scholar 

  57. Man, Z. M.; Li, P.; Zhou, D.; Wang, Y. Z.; Liang, X. H.; Zang, R.; Li, P. X.; Zuo, Y. Q.; Lam, Y. M.; Wang, G. X. Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 2020, 20, 3769–3777.

    CAS  Google Scholar 

  58. Song, T. T.; Liu, Q.; Liu, J. Y.; Yang, W. L.; Chen, R. R.; Jing, X. Y.; Takahashi, K.; Wang, J. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property. Appl. Surf. Sci. 2015, 355, 495–501.

    CAS  Google Scholar 

  59. Xu, Q. T.; Xue, H. G.; Guo, S. P. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 2018, 292, 1–9.

    CAS  Google Scholar 

  60. Liu, J. L.; Wang, M.; Zhang, L. M.; Zang, D. Y.; Liu, H.; Francesca Liotta, L.; Wu, H. J. Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption. J. Colloid Interfaces Sci. 2021, 591, 148–160.

    CAS  Google Scholar 

  61. Van Nguyen, T.; Truong, N. T. N.; Ho, P.; Trinh, T. K.; Kim, J. H.; Park, C. Green and simple preparation of carbon-coated iron pyrite thin films for solar cells application. J. Mater. Sci. Mater. Electron. 2019, 30, 19752–19759.

    CAS  Google Scholar 

  62. Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano. 2016, 10, 1529–1538.

    CAS  Google Scholar 

  63. Wang, Q.; Liu, Z. Q.; Zhao, H. Y.; Huang, H.; Jiao, H.; Du, Y. P. MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 18720–18727.

    CAS  Google Scholar 

  64. Zhang, X.; Zhu, W. F.; Zhang, W. D.; Zheng, S. R.; Qi, S. H. Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance. J. Mater. Sci. Mater. Electron. 2018, 29, 7194–7202.

    CAS  Google Scholar 

  65. Liang, Y. Q.; Yin, X. Q.; Zhang, Y. Q.; Zheng, S. S.; Wu, Z. N.; Jia, H. Y.; Chen, Y. Electromagnetic response and microwave absorption properties of CF/Fe3O4 absorbing composites. J. Mater. Sci. Mater. Electron. 2022, 33, 2152–2165.

    CAS  Google Scholar 

  66. Zhao, B.; Liang, L. Y.; Deng, J. S.; Bai, Z. Y.; Liu, J. W.; Guo, X. Q.; Gao, K.; Guo, W. H.; Zhang, R. 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm 2017, 19, 6579–6587.

    CAS  Google Scholar 

  67. Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

    CAS  Google Scholar 

  68. Liao, Z. J.; Ma, M. L.; Tong, Z. Y.; Bi, Y. X.; Chung, K. L.; Qiao, M. T.; Ma, Y.; Ma, A. J.; Wu, G. L.; Li, Z. X. et al. Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber. J. Colloid Interfaces Sci. 2021, 600, 90–98.

    CAS  Google Scholar 

  69. Wang, N.; Wang, Y.; Lu, Z.; Cheng, R. R.; Yang, L. Q.; Li, Y. F. Hierarchical core–shell FeS2/Fe7S8@C microspheres embedded into interconnected graphene framework for high-efficiency microwave attenuation. Carbon 2023, 202, 254–264.

    CAS  Google Scholar 

  70. Liu, C.; Wang, B. C.; Zhang, C.; Mu, C. P.; Wen, F. S.; Xiang, J. Y.; Nie, A. M.; Liu, Z. Y. Simple preparation and excellent microwave attenuation property of \({\rm{F}}{{\rm{e}}_3}{{\rm{O}}_{{4^ - }}}\) and \({\rm{Fe}}{{\rm{S}}_{{2^ - }}}\) decorated graphene nanosheets by liquid-phase exfoliation. J. Alloys Compd. 2019, 810, 151881.

    CAS  Google Scholar 

  71. Govindasamy, T.; Mathew, N. K.; Asapu, V. K.; Subramanian, V.; Subramanian, B. Investigation on evaluation of \({\rm{F}}{{\rm{e}}_3}{{\rm{S}}_{{4^ - }}}\)carbon black nanohybrids for EMI shield in X-band region. Diam. Relat. Mater. 2023, 131, 109608.

    CAS  Google Scholar 

  72. Li, Z. J.; Lin, H.; Wu, S. Y.; Su, X. Y.; Wang, T.; Zhao, W.; Jiang, Y. J.; Ling, H. L.; Meng, A. L.; Zhang, M. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption. Compos. Sci. Technol. 2022, 229, 109673.

    CAS  Google Scholar 

  73. Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable highperformance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142−12153.

    Google Scholar 

  74. Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nanomicro Lett. 2022, 14, 157.

    CAS  Google Scholar 

  75. Yang, H. J.; Cao, W. Q.; Zhang, D. Q.; Su, T. J.; Shi, H. L.; Wang, W. Z.; Yuan, J.; Cao, M. S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

    CAS  Google Scholar 

  76. Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

    CAS  Google Scholar 

  77. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

    CAS  Google Scholar 

  78. Cheng, J. Y.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 2022, 32, 2200123.

    CAS  Google Scholar 

  79. Zhao, L. B.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Yuan, L. Y.; Zhao, W. X.; Sun, C. L.; Li, Z. J.; Zhang, M. Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 2022, 592, 153324.

    CAS  Google Scholar 

  80. Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

    CAS  Google Scholar 

Download references

Acknowledgements

The work reported here was supported by the National Natural Science Foundation of China (Nos. 52072196, 52002199, 52002200, and 52102106), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), the Natural Science Foundation of Shandong Province (Nos. ZR2019BEM042 and ZR2020QE063), the Innovation and Technology Program of Shandong Province (No. 2020KJA004), and the Taishan Scholars Program of Shandong Province (No. ts201511034). We express our grateful thanks to them for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wang or Zhenjiang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, M., Cheng, T. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 16, 9591–9601 (2023). https://doi.org/10.1007/s12274-023-5776-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5776-x

Keywords

Navigation