Skip to main content
Log in

Solvothermal synthesis of sphere-like CuS microcrystals and improvement as nonenzymatic glucose sensor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, we report the obtention of sphere-like copper sulfide (CuS) microcrystals with 3–5 μm diameter on a large scale by the solvothermal approach, which is simple, facile, and effective. The as-prepared products are well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), indicating that the sphere-like CuS microcrystals are composed of nanosheets with the uniform thickness of about 50 nm and have good morphology and high purity. The factors influencing the formation of the sphere-like CuS microcrystals are investigated in detail using SEM characterizations. Specially adjusting the quantity of thiourea can effectively control the formation of the flower-like, sphere-like, or irregularly spindle-like CuS microcrystals built by nanosheets. Based on the “oriented attachment mechanism,” CuS nanosheets are aligned with one another and point toward the spherical center, and further construct the sphere-like CuS microcrystals. The electrocatalytic oxidation of glucose in alkaline medium at the sphere-like CuS microcrystal-modified electrode has been monitored by cyclic voltammograms (CVs). Compared to the bare glassy carbon electrode, a couple of obvious redox peaks and the improved peak currents toward the glucose redox are examined at the sphere-like CuS sensor with the sensitivity of 117.3 μA cm−2 mM−1. The high electrochemical activity, good repetition, and stability indicate that the sphere-like CuS sensor has the potential application in the nonenzymatic glucose sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Langmuir 25:8349–8356

    Article  CAS  Google Scholar 

  2. Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG (2007) J Mater Sci 42:4947–4953. doi:10.1007/s10853-006-0164-y

    Article  CAS  Google Scholar 

  3. Ballerstadt R, Kholodnykh A, Evans C, Boretsky A, Motamedi M, Gowda A, McNichols R (2007) Anal Chem 79:6965–6974

    Article  CAS  Google Scholar 

  4. Liu Y, Deng C, Tang L, Qin A, Hu R, Sun JZ, Tang BZ (2011) J Am Chem Soc 133:660–663

    Article  CAS  Google Scholar 

  5. Qiu R, Zhang XL, Qiao R, Li Y, Kim Yll, Kang YS (2007) Chem Mater 19:4174–4180

    Article  CAS  Google Scholar 

  6. Wang AJ, Li YF, Li ZH, Feng JJ, Sun YL, Chen JR (2012) Mater Sci Eng C 32:1640–1647

    Article  CAS  Google Scholar 

  7. Qiu C, Wang X, Liu X, Hou S, Ma H (2012) Electrochim Acta 67:140–146

    Article  CAS  Google Scholar 

  8. Lee KK, Loh PY, Sow CH, Chin WS (2012) Electrochem Commun 20:128–132

    Article  CAS  Google Scholar 

  9. Fang B, Gu A, Wang G, Wang W, Feng Y, Zhang C, Zhang X (2009) ACS Appl Mater Interfaces 1:2829–2834

    Article  CAS  Google Scholar 

  10. Wang J, Thomas DF, Chen A (2008) Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  11. Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Electrochim Acta 63:1–8

    Article  CAS  Google Scholar 

  12. Yin J, Lu Q, Yu Z, Wang J, Pang H, Gao F (2010) Cryst Growth Des 10:40–43

    Article  CAS  Google Scholar 

  13. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Nano Lett 12:3005–3011

    Article  CAS  Google Scholar 

  14. Zhang LX, Zhao JH, Lu HG, Li L, Zheng JF, Zhang J, Li H, Zhu ZP (2012) Sens Actuators B 171–172:1101–1109

    Article  Google Scholar 

  15. Yuan KD, Wu JJ, Liu ML, Zhang LL, Xu FF, Chen LD, Huang FQ (2008) Appl Phys Lett 93:132106–132108

    Article  Google Scholar 

  16. Güneri E, Kariper A (2012) J Alloys Comp 516:20–26

    Article  Google Scholar 

  17. Han Y, Wang Y, Gao W, Wang Y, Jiao L, Yuan H, Liu S (2011) Powder Technol 212:64–68

    Article  CAS  Google Scholar 

  18. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Govind, Pal T (2010) Environ Sci Technol 44:6313–6318

    Article  CAS  Google Scholar 

  19. Qian X, Liu H, Chen N, Zhou H, Sun L, Li Y, Li Y (2012) Inorg Chem 51:6771–6775

    Article  CAS  Google Scholar 

  20. Zhu H, Wang J, Wu D (2009) Inorg Chem 48:7099–7104

    Article  CAS  Google Scholar 

  21. Chen YC, Shi JB, Wu C, Chen CJ, Lin YT, Wu PF (2008) Mater Lett 62:1421–1423

    Article  CAS  Google Scholar 

  22. Roy P, Mondal K, Srivastava SK (2008) Cryst Growth Des 8:1530–1534

    Article  CAS  Google Scholar 

  23. Liu XL, Zhu YJ (2011) Mater Lett 65:1089–1091

    Article  CAS  Google Scholar 

  24. Gonçalves AP, Lopes EB, Casaca A, Dias M, Almeida M (2008) J Cryst Growth 310:2742–2745

    Article  Google Scholar 

  25. Li Z, Mi L, Chen W, Hou H, Liu C, Wang H, Zheng Z, Shen C (2012) CrystEngCommunity 14:3965–3971

    Article  CAS  Google Scholar 

  26. Thongtem T, Phuruangrat A, Thongtem S (2007) J Mater Sci 42:9316–9323. doi:10.1007/s10853-007-1909-y

    Article  CAS  Google Scholar 

  27. Mane RS, Lokhande CD (2000) Mater Chem Phys 65:1–31

    Article  CAS  Google Scholar 

  28. Zhang X, Wang G, Gu A, Wei Y, Fang B (2008) Chem Commun 45:5945–5947

    Article  Google Scholar 

  29. Marques VS, Cavalcante LS, Sczancoski JC, Alcântara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Siu Li M, Santos MRMC (2010) Cryst Growth Des 10:4752–4768

    Article  CAS  Google Scholar 

  30. Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Siu Li M (2012) CrystEngCommunity 14:853–868

    Article  CAS  Google Scholar 

  31. Farrell ST, Breslin CB (2004) Electrochim Acta 49:4497–4503

    Article  CAS  Google Scholar 

  32. Xu Q, Zhao Y, Xu JZ, Zhu JJ (2006) Sens Actuators B 114:379–386

    Article  CAS  Google Scholar 

  33. Krylova V, Andrulevičius M (2009) Int J Photoenergy 2009 Article ID 304308, 8 pages

  34. Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MMF (2008) Analyst 133:126–132

    Article  CAS  Google Scholar 

  35. Cao X, Wang N (2011) Analyst 136:4241–4246

    Article  CAS  Google Scholar 

  36. Kwon SY, Kwen HD, Choi SH (2012) J Sens 2012 Article ID 784167, 8 pages

  37. Zhu X, Li C, Zhu X, Xu M (2012) Int J Electrochem Sci 7:8522–8532

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the projects supported by the National Science Foundation for Young Scientists of China (Grant No. 20901051) and by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY12B01007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Tao, F., Wang, L. et al. Solvothermal synthesis of sphere-like CuS microcrystals and improvement as nonenzymatic glucose sensor. J Mater Sci 48, 5509–5516 (2013). https://doi.org/10.1007/s10853-013-7345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7345-2

Keywords

Navigation