Skip to main content
Log in

Synthesis of Fe/Co bimetallic metal–organic framework‐derived composites and their enhanced electromagnetic wave absorption

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) have been garnering considerable attention for application in high‐performance electromagnetic wave absorber owing to their unique ability to reduce the reflection of waves, thereby preventing the deterioration of electronics and human health. To further enhance their absorption performance, this study synthesized uniform‐particle‐sized Fe/Co bimetallic MOF derivatives of CoFe2O4 and FeCo/C via calcination and pyrolysis, respectively, of the MIL‐88A‐structured FeCo‐MOF. In general, MOF derivatives of CoFe2O4 and FeCo/C primarily function as central regulators of dielectric properties and a source of high polarization loss and conductive loss, respectively, in addition to a high magnetic loss. The integration of homogenous MOF derivatives contributes to the synergistic effects that aid in achieving a suitable impedance matching with a strong attenuation capacity to form an improved absorber. Upon regulating the proportion of the derivatives, a minimum reflection loss of − 52.29 dB at 10.78 GHz at a thickness of 1.9 mm and an effective bandwidth of 7.23 GHz (19.24–26.47 GHz) below − 10 dB at a thickness of 0.9 mm were achieved. Therefore, this study presents a new strategy to design excellent electromagnetic wave absorbers with strong absorption and broad effective bandwidth at a low matching thickness for comprehensive applications.

Graphical abstract

The electromagnetic wave absorption performance is optimized through the synergistic effects of the hybridization of MOF derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in this article and its Supplementary Information.

References

  1. Ghoneim FM, Arafat EA (2016) Histological and histochemical study of the protective role of rosemary extract against harmful effect of cell phone electromagnetic radiation on the parotid glands. Acta Histochem 118(5):478–485. https://doi.org/10.1016/j.acthis.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  2. Ma L, Li S, Yan M, Gao N, Liu F, Ma S, Xu J, Dai Y, Han EH, Zhang Z (2023) Self-assembled hollow bowl-shaped metal-organic framework-derived electromagnetic wave absorbers with strong anti-microbiologically influenced corrosion performance. J Alloys Compd 949. https://doi.org/10.1016/j.jallcom.2023.169847

  3. He J, Zhang Y, Zhou K, Yang H, Luo H, Li Y (2023) A hierarchical SiCnw@SiC aerogel decorated with Ni-capped carbon nanotubes toward high-performance electromagnetic wave absorber. Resuslt Phys 49. https://doi.org/10.1016/j.rinp.2023.106500

  4. Hou T, Jia Z, Wang B, Li H, Liu X, Chi Q, Wu G (2021) Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem Eng J 422. https://doi.org/10.1016/j.cej.2021.130079

  5. Sun Z, Yan Z, Yue K, Li A, Qian L (2020) Novel high-performance electromagnetic absorber based on Nitrogen/Boron co-doped reduced graphene oxide. Compos Part B Eng 196. https://doi.org/10.1016/j.compositesb.2020.108132

  6. Wei B, Zhou J, Yao Z, Haidry AA, Qian K, Lin H, Guo X, Chen W (2020) Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres. Appl Surf Sci 508. https://doi.org/10.1016/j.apsusc.2020.145261

  7. Qin L, Liu S, Qin S, Liao L, He M, Yu J (2022) MOF derived porous Ni/Co@C nanocomposite as electromagnetic wave absorber with optimized impedance matching. Compos Commun 33. https://doi.org/10.1016/j.coco.2022.101196

  8. Hu J, Shen Y, Xu L, Liu Y (2020) Facile preparation of flower-like MnO2/reduced graphene oxide (RGO) nanocomposite and investigation of its microwave absorption performance. Chem Phys Lett 739. https://doi.org/10.1016/j.cplett.2019.136953

  9. Huang Y, Liu G, Liu D, Hao M, Xie P, Shi Z, Lin G (2023) Excellent Microwave Absorption Performance in Porous Co/C Nanocomposites by Biomass Conversion. ES Food & Agroforestry 12:888. https://doi.org/10.30919/esfaf888

  10. Zhong Y, Liu D, Yang Q, Qu Y, Yu C, Yan K, Xie P, Qi X, Guo Z, Toktarbay Z (2023) Boosting Microwave Absorption Performance of Bio-gel Derived Co/C Nanocomposites. Eng Sci 26:988. https://doi.org/10.30919/es988

  11. Wan F, Luo F, Mu Y, Zeng Z, Zhou W (2015) Enhanced mechanical and microwave-absorption properties of SiCf/AlPO4 composite with PIP–SiC interphase and the MWCNTs filler. Ceram Int 41(8):9957–9965. https://doi.org/10.1016/j.ceramint.2015.04.075

    Article  CAS  Google Scholar 

  12. Li BP, Wang CG, Wang W, Yu MJ, Gao R, Chen Y, Wang YX (2014) Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon. J Magn Magn Mater 365:40–44. https://doi.org/10.1016/j.jmmm.2014.01.015

  13. Zhang H, Jia Z, Wang B, Wu X, Sun T, Liu X, Bi L, Wu G (2021) Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem Eng J 421. https://doi.org/10.1016/j.cej.2021.129960

  14. Yan F, Zhang S, Zhang X, Li C, Zhu C, Zhang X, Chen Y (2018) Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J Mater Chem C 6(47):12781–12787. https://doi.org/10.1039/c8tc04222e

    Article  CAS  Google Scholar 

  15. Wang Y-Y, Song Y, Sun W-J, Dai K, Yan D-X, Li Z-M (2022) Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. J Mater Sci Technol 102:115–122. https://doi.org/10.1016/j.jmst.2021.06.032

    Article  CAS  Google Scholar 

  16. Ren X, Wang J, Yin H, Tang Y, Fan H, Yuan H, Cui S, Huang L (2022) Hierarchical CoFe2O4@PPy hollow nanocubes with enhanced microwave absorption. Appl Surf Sci 575. https://doi.org/10.1016/j.apsusc.2021.151752

  17. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  CAS  Google Scholar 

  18. Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Deng B, Liu Z, Pan F, Xiang Z, Zhang X, Lu W (2021) Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J Mater Chem A 9(6):3500–3510. https://doi.org/10.1039/d0ta10551a

    Article  CAS  Google Scholar 

  20. Ren Q, Feng T, Song Z, Zhou P, Wang M, Zhang Q, Wang L (2022) Autogenous and Tunable CNTs for Enhanced Polarization and Conduction Loss Enabling Sea Urchin-Like Co(3)ZnC/Co/C Composites with Excellent Microwave Absorption Performance. ACS Appl Mater Interfaces 14(36):41246–41256. https://doi.org/10.1021/acsami.2c13064

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Mao B, Wang X, He T, Huang H (2020) Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers. J Alloys Compd 829. https://doi.org/10.1016/j.jallcom.2020.154609

  22. Zhang X, Jia Z, Zhang F, Xia Z, Zou J, Gu Z, Wu G (2022) MOF-derived NiFe(2)S(4)/Porous carbon composites as electromagnetic wave absorber. J Colloid Interface Sci 610:610–620. https://doi.org/10.1016/j.jcis.2021.11.110

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Liu Q, Liu X, Feng H, Shui H, Yu R (2017) Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem Eng J 314:320–327. https://doi.org/10.1016/j.cej.2016.11.089

    Article  CAS  Google Scholar 

  24. Zhang X, Qiao J, Liu C, Wang FL, Jiang YY, Cui P, Wang Q, Wang Z, Wu LL, Liu JR (2020) A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg Chem Front 7(2):385–393. https://doi.org/10.1039/c9qi01259a

    Article  CAS  Google Scholar 

  25. Qin Z, Wang C, Ma Y, Zhong B, Li X, Zhang P (2022) ZIF-67/GNs derived Co3O4/GNs multilayer flower and porous structure as an efficient electromagnetic wave absorbing material for excellent absorbing properties. Appl Surf Sci 575. https://doi.org/10.1016/j.apsusc.2021.151789

  26. Ma Y, Jiang Y, Qian J, Wang C, Kang S, Chen G, Zhong B (2023) Facile fabrication of Co-MOF/GNs derivatives as electromagnetic wave absorber with thin thickness for X and Ku bands. Ceram Int 49(11):18745–18755. https://doi.org/10.1016/j.ceramint.2023.02.253

    Article  CAS  Google Scholar 

  27. Yu Y, Fang Y, Hu Q, Shang X, Tang C, Meng F (2022) Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. Journal of Materials Chemistry C 10(3):983–993. https://doi.org/10.1039/d1tc04645d

    Article  CAS  ADS  Google Scholar 

  28. Chen G, Sun Q, Cao F, Khan MS, Zhang H, Xu H, Liu Z, Li J, Liu Y, Guo Y, Jian X (2023) Robust silica and carbon bilayers decorating spherical FeCo alloys for high-performance anti-corrosion microwave absorption. J Alloys Compd 936. https://doi.org/10.1016/j.jallcom.2022.168301

  29. Zhang J, Hu J, Liu Y, Liao Z, Han X, Ma Y, Feng C, Ma M (2023) Facile design of sea cucumber-like MOF-derived Fe-Co bimetallic autocatalytic carbon nanotube composites with enhanced microwave absorption properties. Synth Met 297. https://doi.org/10.1016/j.synthmet.2023.117381

  30. Lee HJ, Cho W, Lim E, Oh M (2014) One-pot synthesis of magnetic particle-embedded porous carbon composites from metal-organic frameworks and their sorption properties. Chem Commun 50(41):5476–5479. https://doi.org/10.1039/c4cc01914h

    Article  CAS  Google Scholar 

  31. Ramprasad R, Zurcher P, Petras M, Miller M, Renaud P (2004) Magnetic properties of metallic ferromagnetic nanoparticle composites. J Appl Phys 96(1):519–529. https://doi.org/10.1063/1.1759073

    Article  CAS  ADS  Google Scholar 

  32. Yang Y, Wu N, Li B, Liu W, Pan F, Zeng Z, Liu J (2022) Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. ACS Nano 16(9):15042–15052. https://doi.org/10.1021/acsnano.2c06164

    Article  CAS  PubMed  Google Scholar 

  33. To Loan NT, Hien Lan NT, Thuy Hang NT, Quang Hai N, Tu Anh DT, Thi Hau V, Van Tan L, Van Tran T (2019) CoFe2O4 Nanomaterials: Effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Processes 7(12):885. https://doi.org/10.3390/pr7120885

  34. Wang HC, Xiang L, Wei W, An J, He J, Gong CH, Hou YL (2017) Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. ACS Appl Mater Interfaces 9(48):42102–42110. https://doi.org/10.1021/acsami.7b13796

    Article  CAS  PubMed  Google Scholar 

  35. Pan F, Liu Z, Deng B, Dong Y, Zhu X, Huang C, Shi Z, Lu W (2021) Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 179:554–565. https://doi.org/10.1016/j.carbon.2021.04.053

    Article  CAS  Google Scholar 

  36. Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G (2007) Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks. Science 315(5820):1828–1831. https://doi.org/10.1126/science.1137975

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Zhao X, Yan J, Huang Y, Liu X, Ding L, Zong M, Liu P, Li T (2021) Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J Colloid Interface Sci 595:78–87. https://doi.org/10.1016/j.jcis.2021.03.109

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Benítez de la Torre A, Amaro-Gahete J, Esquivel D, Romero-Salguero FJ, Morales J, Caballero Á (2020) MIL-88A Metal-Organic Framework as a Stable Sulfur-host Cathode for Long-cycle Li-S Batteries. Nanomaterials (Basel) 10(3). https://doi.org/10.3390/nano10030424

  39. Periyasamy T, Asrafali SP, Jang A, Kim SC, Lee J (2023) Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction. Polymers (Basel) 15(17). https://doi.org/10.3390/polym15173588

  40. Sun J, Chen J, Ge H, Yang Y, Wang H, Li N, Sun H (2023) 3D hierarchical porous structure formed by CS/GP/Ni0. 5Co0. 5Fe2O4 for high-efficiency microwave absorption. Compos A Appl Sci 164:107268. https://doi.org/10.1016/j.compositesa.2022.107268

  41. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation. Nano-Micro Lett 15(1). https://doi.org/10.1007/s40820-023-01197-0

  42. Liu H, Li Y, Yuan M, Sun G, Li H, Ma S, Liao Q, Zhang Y (2018) In Situ Preparation of Cobalt Nanoparticles Decorated in N-Doped Carbon Nanofibers as Excellent Electromagnetic Wave Absorbers. ACS Appl Mater Interfaces 10(26):22591–22601. https://doi.org/10.1021/acsami.8b05211

    Article  CAS  PubMed  Google Scholar 

  43. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308(2):289–295. https://doi.org/10.1016/j.jmmm.2006.06.003

    Article  CAS  ADS  Google Scholar 

  44. Park J-H, Ro JC, Suh S-J (2022) Fe/Co ratio dependent excellent microwave absorption of FeCo alloys with a wide bandwidth in the high-frequency region. Mater Res Bull 145:111513. https://doi.org/10.1016/j.materresbull.2021.111513

    Article  CAS  Google Scholar 

  45. Wang X, Zhu T, Chang S, Lu Y, Mi W, Wang W (2020) 3D Nest-Like Architecture of Core-Shell CoFe2O4@1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance. ACS Appl Mater Interfaces 12(9):11252–11264. https://doi.org/10.1021/acsami.9b23489

    Article  CAS  PubMed  Google Scholar 

  46. Alam MM, Rahman MM, Uddin MT, Asiri AM, Uddin J, Islam MA (2020) Fabrication of enzyme-less folic acid sensor probe based on facile ternary doped Fe2O3/NiO/Mn2O3 nanoparticles. Current Research in Biotechnology 2:176–186. https://doi.org/10.1016/j.crbiot.2020.11.003

    Article  Google Scholar 

  47. Xu M, Li J, Yan Y, Zhao X, Yan J, Zhang Y, Lai B, Chen X, Song L (2019) Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chem Eng J 369:403–413. https://doi.org/10.1016/j.cej.2019.03.075

    Article  CAS  Google Scholar 

  48. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, Bai FQ, Zhang HX, Ma TY (2017) Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State Zinc-Air Battery. Adv Energy Mater 7(13):1602420. https://doi.org/10.1002/aenm.201602420

    Article  CAS  Google Scholar 

  49. Indra A, Menezes PW, Zaharieva I, Dau H, Driess M (2020) Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting. J Mater Chem A 8(5):2637–2643. https://doi.org/10.1039/c9ta09775a

    Article  CAS  Google Scholar 

  50. Li H, Lu S, Zheng J, Li N, Lou Y, Tang J, Zhou J, Zhang H, Huang M, Wang D (2022) MOFs-derived hollow FeCo@C as peroxymonosulfate activator for degradation of organic pollutants: Insight into the catalytic sites by experimental and theoretical study. Sep Purif Technol 299:121779. https://doi.org/10.1016/j.seppur.2022.121779

    Article  CAS  Google Scholar 

  51. Du B, Chai L, Li W, Wang X, Chen X, Zhou J, Sun RC (2022) Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep Purif Technol 297. https://doi.org/10.1016/j.seppur.2022.121509

  52. Hou Y, Yang W, Zhong C, Wu S, Wu Y, Liu F, Huang X, Wen G (2019) Thermostable SiCO@BN sheets with enhanced electromagnetic wave absorption. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.122239

  53. Liu W, Tan S, Yang Z, Ji G (2018) Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138:143–153. https://doi.org/10.1016/j.carbon.2018.06.009

    Article  CAS  Google Scholar 

  54. Chen J, Zheng J, Huang Q, Wang F, Ji G (2021) Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe(2)O(4) Nanoparticles. ACS Appl Mater Interfaces 13(30):36182–36189. https://doi.org/10.1021/acsami.1c09430

    Article  CAS  PubMed  Google Scholar 

  55. Li B, Zeng Z, Qiao J, Yang Y, Xu D, Tian H, Liu W, Liu J (2022) Hollow ZnO/Fe3O4@C Nanofibers for Efficient Electromagnetic Wave Absorption. ACS Applied Nano Materials 5(8):11617–11626. https://doi.org/10.1021/acsanm.2c02616

    Article  CAS  Google Scholar 

  56. Dai S, Cheng Y, Quan B, Liang X, Liu W, Yang Z, Ji G, Du Y (2018) Porous-carbon-based Mo(2)C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10(15):6945–6953. https://doi.org/10.1039/c8nr01244j

    Article  CAS  PubMed  Google Scholar 

  57. Lyu L, Wang F, Zhang X, Qiao J, Liu C, Liu J (2021) CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 172:488–496. https://doi.org/10.1016/j.carbon.2020.10.021

    Article  CAS  Google Scholar 

  58. Yan J, Huang Y, Yan Y, Ding L, Liu P (2019) High-Performance Electromagnetic Wave Absorbers Based on Two Kinds of Nickel-Based MOF-Derived Ni@C Microspheres. ACS Appl Mater Interfaces 11(43):40781–40792. https://doi.org/10.1021/acsami.9b12850

    Article  CAS  PubMed  Google Scholar 

  59. Zhou M, Wang J, Tan S, Ji G (2023) Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater Today Phys 31. https://doi.org/10.1016/j.mtphys.2022.100962

  60. Feng M, Zhang K, Xiao J, Liu B, Cheng H, Li Y, Zhao Z, Liang B (2023) Material-structure collaborative design for broadband microwave absorption metamaterial with low density and thin thickness. Compos B Eng 263. https://doi.org/10.1016/j.compositesb.2023.110862

Download references

Funding

This work was supported by the Fundamental Research Program (PNK9420) of the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Contributions

Jae Ryung Choi: Conceptualization, Formal analysis, Writing—review & editing. Eunyeong Cho: Methodology, Investigation, Writing—original draft. Horim Lee: Validation, Data curation. Sang‐Bok Lee: Visualization, Funding acquisition. Woong‐Ryeol Yu: Formal analysis, Supervision. Jeonghun Kim: Methodology, Supervision. Hee Jung Lee: Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Woong‐Ryeol Yu, Jeonghun Kim or Hee Jung Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 804 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.R., Cho, E., Lee, H. et al. Synthesis of Fe/Co bimetallic metal–organic framework‐derived composites and their enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 7, 26 (2024). https://doi.org/10.1007/s42114-023-00824-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00824-z

Keywords

Navigation