Skip to main content
Log in

Advances in green synthesis and applications of graphene

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Green synthesis has grabbed appreciable attention to eliminate the negative effects associated with various chemical processes. Due to the unparalleled electrical, mechanical, thermal and excellent physical properties, graphene, as the thinnest two-dimensional material with high surface area, has the unfathomable potential in the domain of green chemistry in terms of both synthesis and application. In this regard, we present an overview of the research progresses on the greener synthesis of graphene, including micromechanical exfoliation, chemical reduction of graphene oxide (GO), chemical vapor synthesis and popping of GO. Meanwhile, various applications of graphene pertinent to sustainable developments, such as energy storage, catalysis, electrochemistry, fuel cell, supercapacitor and biomedicine have also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.

    Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S V.; Jiang, D.; Zhang, Y.; Dubonos, S V.; Grigorieva, I V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  3. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  4. Smolsky, J. M.; Krasnoslobodtsev, A. V. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 2018, 11, 6346–6359.

    Article  CAS  Google Scholar 

  5. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  6. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  CAS  Google Scholar 

  7. Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of grapheme. Nano Res. 2008, 1, 273–291.

    Article  CAS  Google Scholar 

  8. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

    Article  CAS  Google Scholar 

  9. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  10. Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-2897-3.

  11. Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface. Nano Res. 2020, 13, 2741–2748.

    Article  CAS  Google Scholar 

  12. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  Google Scholar 

  13. Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.

    Article  CAS  Google Scholar 

  14. Yang, X. J.; Yan, M. D. Removing contaminants from transferred CVD graphene. Nano Res. 2020, 13, 599–610.

    Article  CAS  Google Scholar 

  15. Dreyer, D. R.; Park, S. J.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  CAS  Google Scholar 

  16. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  CAS  Google Scholar 

  17. Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 2010, 3, 661–669.

    Article  CAS  Google Scholar 

  18. Malik, S.; Vijayaraghavan, A.; Erni, R.; Ariga, K.; Khalakhan, I.; Hill, J. P. High purity graphenes prepared by a chemical intercalation method. Nanoscale 2010, 2, 2139–2143.

    Article  CAS  Google Scholar 

  19. Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.

    Article  CAS  Google Scholar 

  20. Hong, Y. Z.; Wang, Z. Y.; Jin, X. B. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci. Rep. 2013, 3, 3439.

    Article  Google Scholar 

  21. Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. N.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2020, 14, 260–267.

    Article  CAS  Google Scholar 

  22. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.

    Article  CAS  Google Scholar 

  23. Gurunathan, S.; Han, J. W.; Kim, J. H. Green chemistry approach for the synthesis of biocompatible graphene. Int. J. Nanomedicine 2013, 8, 2719–2732.

    Article  CAS  Google Scholar 

  24. Jiang, B.; Zhao, Q. Y.; Zhang, Z. P.; Liu, B. Z.; Shan, J. Y.; Zhao, L.; Rümmeli, M. K.; Gao, X.; Zhang, Y. F.; Yu, T. J. et al. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Res. 2020, 13, 1564–1570.

    Article  CAS  Google Scholar 

  25. Paredes, J. I.; Villar-Rodil, S.; Fernández-Merino, M. J.; Guardia, L.; Martínez-Alonso, A.; Tascón, J. M. D. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 2011, 21, 298–306.

    Article  CAS  Google Scholar 

  26. Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

    Article  CAS  Google Scholar 

  27. Chen, J. P.; Shi, W. L.; Gao, Z. F.; Wang, T.; Wang, S.; Dong, L. J.; Yang, Q. L.; Xiong, C. X. Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Res. 2018, 11, 820–830.

    Article  CAS  Google Scholar 

  28. Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q. S. et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961.

    Article  CAS  Google Scholar 

  29. Rogers, L.; Jensen, K. F. Continuous manufacturing — the Green Chemistry promise. Green Chem. 2019, 21, 3481–3498.

    Article  CAS  Google Scholar 

  30. Wang, G. M.; Qian, F.; Saltikov, C. W.; Jiao, Y. Q.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011, 4, 563–570.

    Article  CAS  Google Scholar 

  31. Sheldon, R. A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43.

    Article  CAS  Google Scholar 

  32. Iacopi, F.; McIntosh, M. Opportunities and perspectives for green chemistry in semiconductor technologies. Green Chem. 2019, 21, 3250–3255.

    Article  CAS  Google Scholar 

  33. Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

    Article  CAS  Google Scholar 

  34. Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715.

    Article  CAS  Google Scholar 

  35. Alaferdov, A. V.; Gholamipour-Shirazi, A.; Canesqui, M. A.; Danilov, Y. A.; Moshkalev, S. A. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 2014, 69, 525–535.

    Article  CAS  Google Scholar 

  36. Cai, M. Z.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C. Methods of graphite exfoliation. J. Mater. Chem. 2012, 22, 24992–25002.

    Article  CAS  Google Scholar 

  37. Fu, Y. X.; Wang, X. M.; Mo, D. C.; Lu, S. S. Production of monolayer, trilayer, and multi-layer graphene sheets by a re-expansion and exfoliation method. J. Mater. Sci. 2014, 49, 2315–2323.

    Article  CAS  Google Scholar 

  38. Guo, S. J.; Dong, S. J. Graphenenanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

    Article  CAS  Google Scholar 

  39. De Silva, K. K. H.; Huang, H. H.; Joshi, R. K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190–199.

    Article  CAS  Google Scholar 

  40. Chua, C. K.; Pumera, M. Covalent chemistry on graphene. Chem. Soc. Rev. 2013, 42, 3222–3233.

    Article  CAS  Google Scholar 

  41. Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.

    Article  CAS  Google Scholar 

  42. Chua, C. K.; Sofer, Z.; Pumera, M. Graphite oxides: Effects of permanganate and chlorate oxidants on the oxygen composition. Chem.—Eur. J. 2012, 18, 13453–13459.

    Article  CAS  Google Scholar 

  43. Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466–472.

    Google Scholar 

  44. Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    Article  CAS  Google Scholar 

  45. Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

    Article  CAS  Google Scholar 

  46. Chua, C. K.; Pumera, M. Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A 2013, 1, 1892–1898.

    Article  CAS  Google Scholar 

  47. Pham, V. H.; Hur, S. H.; Kim, E. J.; Kim, B. S.; Chung, J. S. Highly efficient reduction of graphene oxide using ammonia borane. Chem. Commun. 2013, 49, 6665–6667.

    Article  CAS  Google Scholar 

  48. Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 2012, 24, 2292–2298.

    Article  CAS  Google Scholar 

  49. Moon, I. K.; Lee, J. Y.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  CAS  Google Scholar 

  50. Qi, M.; Song, J. P.; Jin, C.; Li, Z. P.; Liu, J. H.; Meng, S. M.; Zhao, J. G.; Guo, Y. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid. Carbon 2013, 54, 36–41.

    Article  CAS  Google Scholar 

  51. Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Pham, H. D.; Kim, E. J.; Hur, S. H.; Shin, E. W.; Kim, S.; Chung, J. S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 2010, 46, 4375–4377.

    Article  CAS  Google Scholar 

  52. Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G. P.; Lin, Y. H. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets. ACS Nano 2011, 5, 1785–1791.

    Article  CAS  Google Scholar 

  53. Dreyer, D. R.; Murali, S.; Zhu, Y. W.; Ruoff, R. S.; Bielawski, C. W. Reduction of graphite oxide using alcohols. J. Mater. Chem. 2011, 21, 3443–3447.

    Article  CAS  Google Scholar 

  54. Li, J.; Xiao, G. Y.; Chen, C. B.; Li, R.; Yan, D. Y. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J. Mater. Chem. A 2013, 1, 1481–1487.

    Article  CAS  Google Scholar 

  55. Liu, Y. Z.; Li, Y. F.; Yang, Y. G.; Wen, Y. F.; Wang, M. Z. Reduction of graphene oxide by thiourea. J. Nanosci. Nanotechnol. 2011, 11, 10082–10086.

    Article  CAS  Google Scholar 

  56. Some, S.; Kim, Y. M.; Yoon, Y. H.; Yoo, H. J.; Lee, S.; Park, Y.; Lee, H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 2013, 3, 1929.

    Article  Google Scholar 

  57. Pham, V. H.; Pham, H. D.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Kong, B. S.; Kim, S.; Chung, J. S. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. J. Mater. Chem. 2012, 22, 10530–10536.

    Article  CAS  Google Scholar 

  58. Barman, B. K.; Mahanandia, P.; Nanda, K. K. Instantaneous reduction of graphene oxide at room temperature. RSC Adv. 2013, 3, 12621–12624.

    Article  CAS  Google Scholar 

  59. Liu, Y. S; Luo, F. P. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795.

    Article  CAS  Google Scholar 

  60. Yang, S.; Yue, W. B.; Huang, D. Z.; Chen, C. F.; Lin, H.; Yang, X. J. A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2012, 2, 8827–8832.

    Article  CAS  Google Scholar 

  61. Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat Commun. 2013, 4, 1539.

    Article  CAS  Google Scholar 

  62. Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: An environmentally friendly method. J. Mater. Chem. 2012, 22, 9696–9703.

    Article  CAS  Google Scholar 

  63. Ma, J. K.; Wang, X. R.; Liu, Y.; Wu, T.; Liu, Y.; Guo, Y. Q.; Li, R. Q.; Sun, X. Y.; Wu, F.; Li, C. B. et al. Reduction of graphene oxide with L-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A 2013, 1, 2192–2201.

    Article  CAS  Google Scholar 

  64. Thakur, S.; Karak, N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon 2012, 50, 5331–5339.

    Article  CAS  Google Scholar 

  65. Haghighi, B.; Tabrizi, M. A. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv. 2013, 3, 13365–13371.

    Article  CAS  Google Scholar 

  66. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. A green approach for the reduction of graphene oxide by wild carrot root. Carbon 2012, 50, 914–921.

    Article  CAS  Google Scholar 

  67. Liu, J. B.; Fu, S. H.; Yuan, B.; Li, Y. L.; Deng, Z. X. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281.

    Article  CAS  Google Scholar 

  68. Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 2011, 21, 10907–10914.

    Article  CAS  Google Scholar 

  69. Somani, P. R.; Somani, S. P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

    Article  CAS  Google Scholar 

  70. Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

    Article  CAS  Google Scholar 

  71. Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339.

    Article  CAS  Google Scholar 

  72. Orofeo, C. M.; Ago, H.; Hu, B. S.; Tsuji, M. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 2011, 4, 531–540.

    Article  CAS  Google Scholar 

  73. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  74. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  CAS  Google Scholar 

  75. Coraux, J.; N‘Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Article  CAS  Google Scholar 

  76. Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt (111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

    Article  CAS  Google Scholar 

  77. Varykhalov, A.; Rader, O. Graphene grown on Co (0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437.

    Article  CAS  Google Scholar 

  78. Kwon, S. Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985–3990.

    Article  CAS  Google Scholar 

  79. Miniussi, E.; Pozzo, M.; Baraldi, A.; Vesselli, E.; Zhan, R. R.; Comelli, G.; Menteş, T. O.; Niño, M. A.; Locatelli, A.; Lizzit, S. et al. Thermal stability of corrugated epitaxial graphene grown on Re(0001). Phys. Rev. Lett. 2011, 106, 216101.

    Article  CAS  Google Scholar 

  80. Muñoz, B.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vapor Depos. 2013, 19, 297–322.

    Article  CAS  Google Scholar 

  81. Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051–3058.

    Article  CAS  Google Scholar 

  82. Kraus, J.; Böcklein, S.; Reichelt, R.; Günther, S.; Santos, B.; Menteş, T. O.; Locatelli, A. Towards the perfect graphene membrane? — Improvement and limits during formation of high quality graphene grown on Cu-foils. Carbon 2013, 64, 377–390.

    Article  CAS  Google Scholar 

  83. Srivastava, A.; Galande, C.; Ci, L. J.; Song, L.; Rai, C.; Jariwala, D.; Kelly, K. F.; Ajayan, P. M. Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 2010, 22, 3457–3461.

    Article  CAS  Google Scholar 

  84. Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y. P.; Li, H. F.; Ji, H. X.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano. 2012, 6, 2471–2476.

    Article  CAS  Google Scholar 

  85. Huet, B.; Raskin, J. P. Pressure-controlled chemical vapor deposition of single-layer graphene with millimeter-size domains on thin copper film. Chem. Mater. 2017, 29, 3431–3440.

    Article  CAS  Google Scholar 

  86. Huet, B.; Raskin, J. P. Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains. Carbon 2018, 129, 270–280.

    Article  CAS  Google Scholar 

  87. Huet, B.; Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 2018, 10, 21898–21909.

    Article  CAS  Google Scholar 

  88. Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122–4130.

    Article  CAS  Google Scholar 

  89. Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82–92.

    Article  CAS  Google Scholar 

  90. Gao, Y. J.; Chen, X.; Zhang, J. G.; Asakura, H.; Tanaka, T.; Teramura, K.; Ma, D.; Yan, N. Popping of graphite oxide: Application in preparing metal nanoparticle catalysts. Adv. Mater. 2015, 27, 4688–4694.

    Article  CAS  Google Scholar 

  91. Kalita, G.; Masahiro, M.; Uchida, H.; Wakita, K.; Umeno, M. Few layers of graphene as transparent electrode from botanical derivative camphor. Mater. Lett. 2010, 64, 2180–2183.

    Article  CAS  Google Scholar 

  92. Zhang, B. B.; Song, J. L.; Yang, G. Y.; Han, B. X. Large-scale production of high-quality graphene using glucose and ferric chloride. Chem. Sci. 2014, 5, 4656–4660.

    Article  CAS  Google Scholar 

  93. Ruan, G. D.; Sun, Z. Z.; Peng, Z. W.; Tour, J. M. Growth of graphene from food, insects, and waste. ACS Nano 2011, 5, 7601–7607.

    Article  CAS  Google Scholar 

  94. Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A.; Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.

    Article  Google Scholar 

  95. Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 2008, 6, 592–603.

    Article  CAS  Google Scholar 

  96. Salas, E. C.; Sun, Z. Z.; Lüttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856.

    Article  CAS  Google Scholar 

  97. Zhang, H. M.; Yu, X. Z.; Guo, D.; Qu, B. H.; Zhang, M.; Li, Q. H.; Wang, T. H. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 7335–7340.

    Article  CAS  Google Scholar 

  98. Gurunathan, S.; Han, J. W.; Eppakayala, V.; Kim, J. H. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloids Surf B Biointerfaces 2013, 102, 772–777.

    Article  CAS  Google Scholar 

  99. Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

    Article  CAS  Google Scholar 

  100. Aunkor, M. T. H.; Mahbubul, I. M.; Saidur, R.; Metselaar, H. S. C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828.

    Article  CAS  Google Scholar 

  101. Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.

    Article  CAS  Google Scholar 

  102. Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.

    Article  CAS  Google Scholar 

  103. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  104. Silberberg, A. Basic principles of colloid science: D. H. Everett, Royal Society of Chemistry, London, 1988. 243 (xv) pp. J. Colloid Interface Sci. 1990, 134, 593–594.

    Article  Google Scholar 

  105. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  106. Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, 2001; pp 376–377.

    Google Scholar 

  107. Dukhin, S. S. Dielectric properties of disperse systems. Surface and colloid science. 1971, 3, 83–165.

    CAS  Google Scholar 

  108. Kashyap, S.; Mishra, S.; Behera, S. K. Aqueous colloidal stability of graphene oxide and chemically converted graphene. J. Nanopart. 2014, 2014, 640281.

    Google Scholar 

  109. Tian, S. Y.; Yang, S. W.; Huang, T.; Sun, J.; Wang, H. S.; Pu, X. P.; Tian, L. F.; He, P.; Ding, G. Q.; Xie, X. M. One-step fast electrochemical fabrication of water-dispersible graphene. Carbon 2017, 111, 617–621.

    Article  CAS  Google Scholar 

  110. Unalan, I. U.; Wang, C. Y.; Trabattoni, S.; Piergiovanni, L.; Farris, S. Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv. 2015, 5, 26482–26490.

    Article  CAS  Google Scholar 

  111. Liu, Z. Y.; Zhang, H.; Eredia, M.; Qiu, H. X.; Baaziz, W.; Ersen, O.; Ciesielski, A.; Bonn, M.; Wang, H. I.; Samorì, P. Water-dispersed high-quality graphene: A green solution for efficient energy storage applications. ACS Nano 2019, 13, 9431–9441.

    Article  CAS  Google Scholar 

  112. Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.; Drummond, C. Surfactant-free single-layer graphene in water. Nat. Chem. 2017, 9, 347–352.

    Article  CAS  Google Scholar 

  113. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  114. Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

    Article  CAS  Google Scholar 

  115. Nguyen, T. H.; Perilli, D.; Cattelan, M.; Liu, H. S.; Sedona, F.; Fox, N. A.; Di Valentin, C.; Agnoli, S. Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride. Nano Res. 2019, 12, 675–682.

    Article  CAS  Google Scholar 

  116. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

    Article  CAS  Google Scholar 

  117. Han, T. H.; Lee, Y. B.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

    Article  CAS  Google Scholar 

  118. Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. S.; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465–471.

    Article  CAS  Google Scholar 

  119. Zhang, Y.; Wang, J. S.; Qiu, J. J.; Jin, X.; Umair, M. M.; Lu, R. W.; Zhang, S. F.; Tang, B. T. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl. Energy 2019, 237, 83–90.

    Article  CAS  Google Scholar 

  120. Khandelwal, M.; Hur, S. H.; Chung, J. S. Tailoring the structural properties of simultaneously reduced and functionalized graphene oxide via alkanolamine(s)/alkyl alkanolamine for energy storage applications. Chem. Eng. J. 2019, 363, 120–132.

    Article  CAS  Google Scholar 

  121. Ghaly, H. A.; El-Deen, A. G.; Souaya, E. R.; Allam, N. K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69.

    Article  CAS  Google Scholar 

  122. Fang, H.; Meng, F. T.; Yan, J.; Chen, G. Y.; Zhang, L. S.; Wu, S. D.; Zhang, S. C.; Wang, L. Z.; Zhang, Y. X. Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv. 2019, 9, 20107–20112.

    Article  CAS  Google Scholar 

  123. Chen, D. Z.; Qin, S. Y.; Tsui, G. C. P.; Tang, C. Y.; Ouyang, X.; Liu, J. H.; Tang, J. N.; Zuo, J. D. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage. Compos. B: Eng. 2019, 157, 239–247.

    Article  CAS  Google Scholar 

  124. Samantara, A. K.; Kamila, S.; Ghosh, A.; Jena, B. K. Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim. Acta 2018, 263, 147–157.

    Article  CAS  Google Scholar 

  125. Liu, X. X.; Chao, D. L.; Su, D. P.; Liu, S. K.; Chen, L.; Chi, C. X.; Lin, J. Y.; Shen, Z. X.; Zhao, J. P.; Mai, L. Q. et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 2017, 37, 108–117.

    Article  CAS  Google Scholar 

  126. Deshmukh, K.; Ahamed, M. B.; Deshmukh, R. R.; Pasha, S. K. K.; Sadasivuni, K. K.; Ponnamma, D.; Chidambaram, K. Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur. Polym. J. 2016, 76, 14–27.

    Article  CAS  Google Scholar 

  127. Amin, M.; Putra, N.; Kosasih, E. A.; Prawiro, E.; Mahlia, T. M. I. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280.

    Article  CAS  Google Scholar 

  128. Vineesh, T. V.; Mubarak, S.; Hahm, M. G.; Prabu, V.; Alwarappan, S.; Narayanan, T. N. Controllably alloyed, low density, free-standing Ni-Co and Ni-graphene sponges for electrocatalytic water splitting. Sci. Rep. 2016, 6, 31202.

    Article  CAS  Google Scholar 

  129. Zhang, B.; Sun, G.; Ding, S. P.; Asakura, H.; Zhang, J.; Sautet, P.; Yan, N. Atomically dispersed Pt1-polyoxometalate catalysts: How does metal-support interaction affect stability and hydrogenation activity. J. Am. Chem. Soc. 2019, 141, 8185–8197.

    Article  CAS  Google Scholar 

  130. Sahraei, R.; Pour, Z. S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984.

    Article  CAS  Google Scholar 

  131. Li, J.; Zhang, D. Z.; Yang, T. T.; Yang, S.; Yang, X. D.; Zhu, H. W. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Memb. Sci. 2018, 551, 85–92.

    Article  CAS  Google Scholar 

  132. Singh, S. B.; Hussain, C. M. Nano-graphene as groundbreaking miracle material: Catalytic and commercial perspectives. ChemistrySelect 2018, 3, 9533–9544.

    Article  CAS  Google Scholar 

  133. Su, Y.; Zhang, Y. F.; Qi, J. X.; Xue, T. T.; Xu, M. G.; Yang, J. Z.; Pan, Y.; Lin, Z. K. Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles. Renew. Energy 2020, 152, 94–101.

    Article  CAS  Google Scholar 

  134. Lan, Y. F.; Li, X. Y.; Li, G. P.; Luo, Y. J. Sol-gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J. Nanopart. Res. 2015, 17, 395.

    Article  CAS  Google Scholar 

  135. Hong, W.; Li, L. J.; Xue, Y. N.; Xu, X. Y.; Wang, H.; Zhou, J. K.; Zhao, H. L.; Song, Y. H.; Liu, Y.; Gao, J. P. One-pot hydrothermal synthesis of zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. J. Colloid. Interface. Sci. 2017, 485, 175–182.

    Article  CAS  Google Scholar 

  136. Zu, Y. Q.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. A graphene oxide-MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. RSC Adv. 2016, 6, 31046–31052.

    Article  CAS  Google Scholar 

  137. Liu, B.; Wang, W. M.; Wang, J. J.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition. J. Nanopart. Res. 2019, 21, 48.

    Article  CAS  Google Scholar 

  138. Chen, J.; Xiao, P.; Gu, J. C.; Huang, Y. J.; Zhang, J. W.; Wang, W. Q.; Chen, T. Au nanoparticle-loaded PDMAEMA brush grafted graphene oxide hybrid systems for thermally smart catalysis. RSC Adv. 2014, 4, 44480–44485.

    Article  CAS  Google Scholar 

  139. Ali, A. A.; Madkour, M.; Al Sagheer, F.; Zaki, M. I.; Nazeer, A. A. Low-temperature catalytic CO oxidation over non-noble, efficient chromia in reduced graphene oxide and graphene oxide nanocomposites. Catalysts 2020, 10, 105.

    Article  CAS  Google Scholar 

  140. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

    Article  CAS  Google Scholar 

  141. Zhang, J. Y.; Deng, Y. C.; Cai, X. B.; Chen, Y. L.; Peng, M.; Jia, Z. M.; Jiang, Z.; Ren, P. J.; Yao, S. Y.; Xie, J. L. et al. Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 2019, 9, 5998–6005.

    Article  CAS  Google Scholar 

  142. Karimi, A.; Sadighi, S. Graphene supported NiMo catalyst: A promising novel hydrocracking catalyst. Int. J. Chem. Kinet. 2020, 52, 378–386.

    Article  CAS  Google Scholar 

  143. Liu, J. W.; Ma, Q. L.; Huang, Z. Q.; Liu, G. G.; Zhang, H. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 2019, 31, 1800696.

    Article  CAS  Google Scholar 

  144. Fan, X. B.; Zhang, G. L.; Zhang, F. B. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023–3035.

    Article  CAS  Google Scholar 

  145. Ta, H. Q.; Zhao, L.; Yin, W. J.; Pohl, D.; Rellinghaus, B.; Gemming, T.; Trzebicka, B.; Palisaitis, J.; Jing, G.; Persson, P. O. Å. et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405–2411.

    Article  CAS  Google Scholar 

  146. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  147. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    Article  CAS  Google Scholar 

  148. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  149. Niu, H. J.; Zhang, L.; Feng, J. J.; Zhang, Q. L.; Huang, H.; Wang, A. J. Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J. Colloid Interface Sci. 2019, 552, 744–751.

    Article  CAS  Google Scholar 

  150. Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833.

    Article  CAS  Google Scholar 

  151. Gao, Z. Y.; Liu, X.; Chang, J. L.; Wu, D. P.; Xu, F.; Zhang, L. C.; Du, W. M.; Jiang, K. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35.

    Article  CAS  Google Scholar 

  152. Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117.

    Article  CAS  Google Scholar 

  153. Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

    Article  CAS  Google Scholar 

  154. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

    Article  CAS  Google Scholar 

  155. Hülsey, M. J.; Lim, C. W.; Yan, N. Promoting heterogeneous catalysis beyond catalyst design. Chem. Sci. 2020, 11, 1456–1468.

    Article  Google Scholar 

  156. Ding, S. P.; Guo, Y. L.; Max J. H.; Zhang, B.; Asakura, H.; Liu, L. M.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B. T. et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019, 5, 3207–3219.

    Article  CAS  Google Scholar 

  157. Akira, F.; Kenichi, H. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  158. Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

    Article  CAS  Google Scholar 

  159. Li, X.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696.

    Article  CAS  Google Scholar 

  160. Bie, C. B.; Zhu, B. C.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 2019, 31, 1902868.

    Article  CAS  Google Scholar 

  161. Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

    Article  CAS  Google Scholar 

  162. Wang, L.; Li, Z.; Chen, J.; Huang, Y. N.; Zhang, H. J.; Qiu, H. D. Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ. Pollut. 2019, 249, 801–811.

    Article  CAS  Google Scholar 

  163. Kuang, Y.; Shang, J.; Zhu, T. Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 2020, 12, 3580–3591.

    Article  CAS  Google Scholar 

  164. Jiang, J. X.; Zhang, Q. Q.; Li, Y. H.; Li, L. Three-dimensional network graphene aerogel for enhancing adsorption and visible light photocatalysis of nitrogen-doped TiO2. Mater. Lett. 2019, 234, 298–301.

    Article  CAS  Google Scholar 

  165. Dong, S. Y.; Cui, L. F.; Liu, C. Y.; Zhang, F. Y.; Li, K. Y.; Xia, L. J.; Su, X. F.; Feng, J. L.; Zhu, Y. F.; Sun, J. H. Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: A promising photocatalysts for water purification. J. Taiwan Inst. Chem. Eng. 2019, 97, 288–296.

    Article  CAS  Google Scholar 

  166. Zhang, H. J.; Xu, P. P.; Du, G. D.; Chen, Z. W.; Oh, K.; Pan, D. Y.; Jiao, Z. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 2011, 4, 274–283.

    Article  CAS  Google Scholar 

  167. Yu, Q.; Lin, R.; Jiang, L. Y.; Wan, J. W.; Chen, C. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates. Sci. China Mater. 2018, 61, 1007–1011.

    Article  CAS  Google Scholar 

  168. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

    Article  CAS  Google Scholar 

  169. Jia, J. B.; Kato, D.; Kurita, R.; Sato, Y.; Maruyama, K.; Suzuki, K.; Hirono, S.; Ando, T.; Niwa, O. Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method. Anal. Chem. 2007, 79, 98–105.

    Article  CAS  Google Scholar 

  170. Pumera, M. ChemInform abstract: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.

    Google Scholar 

  171. Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultrasensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.

    Article  CAS  Google Scholar 

  172. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    Article  CAS  Google Scholar 

  173. Mansouri, N.; Babadi, A. A.; Bagheri, S.; Hamid, S. B. A. H. Immobilization of glucose oxidase on 3D graphene thin film: Novel glucose bioanalytical sensing platform. Int. J. Hydrogen Energy 2017, 42, 1337–1343.

    Article  CAS  Google Scholar 

  174. Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008, 18, 3506–3514.

    Article  CAS  Google Scholar 

  175. Goryacheva, O. A.; Vostrikova, A. M.; Kokorina, A. A.; Mordovina, E. A.; Tsyupka, D. V.; Bakal, A. A.; Markin, A. V.; Shandilya, R.; Mishra, P. K.; Beloglazova, N. V. et al. Luminescent carbon nanostructures for microRNA detection. TrAC Trends Anal. Chem. 2019, 119, 115613.

    Article  CAS  Google Scholar 

  176. Hébert, C.; Masvidal-Codina, E.; Suarez-Perez, A.; Calia, A. B.; Piret, G.; Garcia-Cortadella, R.; Illa, X.; Del Corro Garcia, E.; De la Cruz Sanchez, J. M.; Casals, D. V. et al. Flexible graphene solution-gated field-effect transistors: Efficient transducers for microelectrocorticography. Adv. Funct. Mater. 2018, 28, 1703976.

    Article  CAS  Google Scholar 

  177. Kanai, Y.; Ohmuro-Matsuyama, Y.; Tanioku, M.; Ushiba, S.; Ono, T.; Inoue, K.; Kitaguchi, T.; Kimura, M.; Ueda, H.; Matsumoto, K. Graphene field effect transistor-based immunosensor for ultrasensitive noncompetitive detection of small antigens. ACS Sens. 2020, 5, 24–28.

    Article  CAS  Google Scholar 

  178. Shao, Y. Y.; Yin, G. P.; Gao, Y. Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566.

    Article  CAS  Google Scholar 

  179. Wu, Z. S.; Wang, D. W.; Ren, W. C.; Zhao, J. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

    Article  CAS  Google Scholar 

  180. Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781–787.

    Article  CAS  Google Scholar 

  181. Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 2003, 107, 6292–6299.

    Article  CAS  Google Scholar 

  182. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogendoped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  CAS  Google Scholar 

  183. Koo, B.; Lee, S. M.; Oh, S. E.; Kim, E. J.; Hwang, Y.; Seo, D.; Kim, J. Y.; Khang, Y. H.; Lee, Y. W.; Chung, S. Y. et al. Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance. Electrochim. Acta 2019, 297, 613–622.

    Article  CAS  Google Scholar 

  184. Luo, Z. Y.; Gong, Y. J.; Liao, X. F.; Pana, Y. J.; Zhang, H. W. Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells. RSC Adv. 2016, 6, 13618–13625.

    Article  CAS  Google Scholar 

  185. Papiya, F.; Das, S.; Pattanayak, P.; Kundu, P. P. The fabrication of silane modified graphene oxide supported Ni-Co bimetallic electrocatalysts: A catalytic system for superior oxygen reduction in microbial fuel cells. Int. J. Hydrogen Energy 2019, 44, 25874–25893.

    Article  CAS  Google Scholar 

  186. Pothaya, S.; Regalbuto, J. R.; Monnier, J. R.; Punyawudho, K. Preparation of Pt/graphene catalysts for polymer electrolyte membrane fuel cells by strong electrostatic adsorption technique. Int. J. Hydrogen Energy 2019, 44, 26361–26372.

    Article  CAS  Google Scholar 

  187. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  CAS  Google Scholar 

  188. Yang, Y.; Xue, Y. S.; Zhang, H.; Chang, H. L. Flexible H2O2 microfluidic fuel cell using graphene/Prussian blue catalyst for high performance. Chem. Eng. J. 2019, 369, 813–817.

    Article  CAS  Google Scholar 

  189. Yang, H. J.; Geng, L.; Zhang, Y. T.; Chang, G.; Zhang, Z. L.; Liu, X.; Lei, M.; He, Y. B. Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl. Surf. Sci. 2019, 466, 385–392.

    Article  CAS  Google Scholar 

  190. Yousef, A.; El-Newehy, M. H.; Al-Deyab, S. S.; Barakat, N. A. M. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells. Arab. J. Chem. 2017, 10, 811–822.

    Article  CAS  Google Scholar 

  191. Cheng, Y.; He, S.; Lu, S. F.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q. F. et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 2019, 6, 1802066.

    Article  CAS  Google Scholar 

  192. Hou, J. B.; Shao, Y. Y.; Ellis, M. W.; Moore, R. B.; Yi, B. L. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13, 15384–15402.

    Article  CAS  Google Scholar 

  193. Tan, Y. B.; Lee, J. M. Graphene for supercapacitor applications. J. Mater. Chem. A 2013, 1, 14814–14843.

    Article  CAS  Google Scholar 

  194. Shi, W. H.; Zhu, J. X.; Sim, D. H.; Tay, Y. Y.; Lu, Z. Y.; Zhang, X. J.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H. H. et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 2011, 21, 3422–3427.

    Article  CAS  Google Scholar 

  195. Ma, Y. Y.; Yuan, W. Y.; Bai, Y. H.; Wu, H.; Cheng, L. F. The toughening design of pseudocapacitive materials via graphene quantum dots: Towards enhanced cycling stability for supercapacitors. Carbon 2019, 154, 292–300.

    Article  CAS  Google Scholar 

  196. Ramadan, A.; Anas, M.; Ebrahim, S.; Soliman, M.; Abou-Aly A. Effect of co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J. Mater. Sci.: Mater. Electron. 2020, 31, 7247–7259.

    CAS  Google Scholar 

  197. Lei, Z. B.; Zhang, J. T.; Zhao, X. S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. 2012, 22, 153–160.

    Article  CAS  Google Scholar 

  198. Zhang, W. Y.; Yang, Y. N.; Xia, R. Q.; Li, Y. C.; Zhao, J. Q.; Lin, L.; Cao, J. M.; Wang, Q. H.; Liu, Y.; Guo, H. W. Graphene-quantumdots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors. Carbon 2020, 162, 114–123.

    Article  CAS  Google Scholar 

  199. Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730.

    Article  CAS  Google Scholar 

  200. Moitra, D.; Anand, C.; Ghosh, B. K.; Chandel, M.; Ghosh, N. N. One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material. ACS Appl. Energy Mater. 2018, 1, 464–474.

    Article  CAS  Google Scholar 

  201. Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  CAS  Google Scholar 

  202. Zhang, G. X.; Xiao, X.; Li, B.; Gu, P.; Xue, H. G.; Pang, H. Transition metal oxides with one-dimensional/one-dimensionalanalogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 2017, 5, 8155–8186.

    Article  CAS  Google Scholar 

  203. Lei, Z. B.; Shi, F. H.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064.

    Article  CAS  Google Scholar 

  204. Li, Z. M.; An, Y. F.; Hu, Z. G.; An, N.; Zhang, Y. D.; Guo, B. S.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 2016, 4, 10618–10626.

    Article  CAS  Google Scholar 

  205. Tu, C. C.; Lin, L. Y.; Xiao, B. C.; Chen, Y. S. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J. Power Sources 2016, 320, 78–85.

    Article  CAS  Google Scholar 

  206. Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.

    Article  CAS  Google Scholar 

  207. Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612–621.

    Article  CAS  Google Scholar 

  208. Xia, X. H.; Tu, J. P.; Mai, Y. J.; Chen, R.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chemistry 2011, 17, 10898–10905.

    Article  CAS  Google Scholar 

  209. Chen, Z.; Lu, J. F.; Ai, Y. J.; Ji, Y. F.; Adschiri, T.; Wan, L. J. Ruthenium/graphene-like layered carbon composite as an efficient hydrogen evolution reaction electrocatalyst. ACS Appl. Mater. Interfaces 2016, 8, 35132–35137.

    Article  CAS  Google Scholar 

  210. Xiang, C. C.; Li, M.; Zhi, M. J.; Manivannan, A.; Wu, N. Q. Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: Shape and coupling effects. J. Mater. Chem. 2012, 22, 19161–19167.

    Article  CAS  Google Scholar 

  211. Zhu, Q. X.; Qin, F. F.; Lu, J. F.; Zhu, Z.; Nan, H. Y.; Shi, Z. L.; Ni, Z. H.; Xu, C. X. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 2017, 10, 1996–2004.

    Article  CAS  Google Scholar 

  212. Qiu, L.; Yang, X. W.; Gou, X. L.; Yang, W. R.; Ma, Z. F.; Wallace, G. G.; Li, D. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem.—Eur. J. 2010, 16, 10653–10658.

    Article  CAS  Google Scholar 

  213. Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Graphene assembly: Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors (Adv. Mater. 25/2011). Adv. Mater. 2011, 23, 2771.

    Article  Google Scholar 

  214. Yang, W. L.; Gao, Z.; Wang, J.; Wang, B.; Liu, Q.; Li, Z. S.; Mann, T.; Yang, P. P.; Zhang, M. L.; Liu, L. H. Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim. Acta 2012, 69, 112–119.

    Article  CAS  Google Scholar 

  215. Wu, Y. P.; Zhu, J. H.; Huang, L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon 2019, 143, 610–640.

    Article  CAS  Google Scholar 

  216. Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

    Article  CAS  Google Scholar 

  217. Shah, S. A.; Kulhanek, D.; Sun, W. M.; Zhao, X. F.; Yu, S.; Parviz, D.; Lutkenhaus, J. L.; Green, M. J. Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. J. Colloid Interface Sci. 2020, 560, 581–588.

    Article  CAS  Google Scholar 

  218. Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99–110.

    Article  CAS  Google Scholar 

  219. Li, S. M.; Yang, K.; Ya, P. W.; Ma, K. R.; Zhang, Z.; Huang, Q. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl. Surf. Sci. 2020, 503, 144090.

    Article  CAS  Google Scholar 

  220. Ramadoss, A.; Yoon, K. Y.; Kwak, M. J.; Kim, S. I.; Ryu, S. T.; Jang, J. H. Fully flexible, lightweight, high performance all-solidstate supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 2017, 337, 159–165.

    Article  CAS  Google Scholar 

  221. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  CAS  Google Scholar 

  222. Chen, P.; Yang, J. J.; Li, S. S.; Wang, Z.; Xiao, T. Y.; Qian, Y. H.; Yu, S. H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013, 2, 249–256.

    Article  CAS  Google Scholar 

  223. Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

    Article  Google Scholar 

  224. Chen, Y.; Wang, L. Z.; Shi, J. L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11, 292–308.

    Article  CAS  Google Scholar 

  225. Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Cong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973–990.

    Article  CAS  Google Scholar 

  226. Kiew, S. F.; Ho, Y. T.; Kiew, L. V.; Kah, J. C. Y.; Lee, H. B.; Imae, T.; Chung, L. Y. Preparation and characterization of an amylasetriggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int. J. Pharm. 2017, 534, 297–307.

    Article  CAS  Google Scholar 

  227. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    Article  CAS  Google Scholar 

  228. Shang, W. H.; Zhang, X. Y.; Zhang, M.; Fan, Z. T.; Sun, Y.; Han, M.; Fan, L. Z. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 2014, 6, 5799–5806.

    Article  CAS  Google Scholar 

  229. Xie, M.; Zhang, F.; Liu, L. J.; Zhang, Y. N.; Li, Y. P.; Li, H. M.; Xie, J. M. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018, 440, 853–860.

    Article  CAS  Google Scholar 

  230. Gai, L. X.; Wang, W. Q.; Wu, X.; Su, X. J.; Yang, F. C. NIR absorbing reduced graphene oxide for photothermal radiotherapy for treatment of esophageal cancer. J. Photochem. Photobiol. B 2019, 194, 188–193.

    Article  CAS  Google Scholar 

  231. Geng, H.; Qiu, J. J.; Zhu, H. Q.; Liu, X. Y. Achieving stem cell imaging and osteogenic differentiation by using nitrogen doped graphene quantum dots. J. Mater. Sci. 2018, 29, 85.

    Google Scholar 

  232. Guo, L. L.; Shi, H. L.; Wu, H. X.; Zhang, Y. X.; Wang, X.; Wu, D. M.; Lu A.; Yang, S. P. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon 2016, 107, 87–99.

    Article  CAS  Google Scholar 

  233. Lima-Sousa, R.; Melo-Diogo, D.; Alves, C. G.; Costa, E. C.; Ferreira, P.; Louro, R. O.; Correia, I. J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym. 2018, 200, 93–99.

    Article  CAS  Google Scholar 

  234. Wang, Y.; Zhang, P.; Liu, C. F.; Zhan, L.; Lia, Y. F.; Huang, C. Z. Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Adv. 2012, 2, 2322–2328.

    Article  CAS  Google Scholar 

  235. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  CAS  Google Scholar 

  236. Muñoz, J.; Riba-Moliner, M.; Brennan, L. J.; Gun’ko, Y. K.; Céspedes, F.; González-Campo, A.; Baeza, M. Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim. Acta 2016, 183, 1579–1589.

    Article  CAS  Google Scholar 

  237. Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

    Article  CAS  Google Scholar 

  238. Chen, L. Q.; Hu, P. P.; Zhang, L.; Huang, S. Z.; Luo, L. F.; Huang, C. Z. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci. China Chem. 2012, 55, 2209–2216.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51502166), and the Scientific Research Program Funded by Shaanxi Provincial Department (No. 17JK0130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Jiang, J., Jiang, L. et al. Advances in green synthesis and applications of graphene. Nano Res. 14, 3724–3743 (2021). https://doi.org/10.1007/s12274-021-3336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3336-9

Keywords

Navigation