Skip to main content
Log in

Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A graphene oxide-based nano-metal composite oxide CuFe2O4/GO was successfully prepared by a versatile self-assembly approach. Structure and morphological characterization of CuFe2O4/GO nanocomposite were studied in detail by a series of characterization techniques including XRD, FT-IR, XPS, BET, SEM, and TEM. The results revealed that the self-assembly process did not destroy the composition and morphology of the spinel-structured CuFe2O4 particle, and the transparent GO sheets with wrinkled and rough texture are tightly coated on the surface of CuFe2O4 nanoparticles like a layer of thin gauze clothing. The particle size of CuFe2O4 is about 200 nm. Catalytic activity of as-prepared CuFe2O4/GO nanocomposite on the thermal decomposition of cyclotrimethylene trinitramine (RDX) was investigated via differential scanning calorimetry (DSC). The experimental results show that the CuFe2O4/GO nanocomposite has much higher catalytic activity than single CuFe2O4 nanoparticles and GO. Thermal decomposition temperature and apparent activation energy of RDX were reduced from 241.27 to 220.34 °C and from 172.6 to 142.56 kJ mol−1, respectively. The improved performance could be attributed to the “positive synergistic effect” between CuFe2O4 nanoparticles and GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arias JL, Ruiz MA, Gallardo V, Delgado AV (2008) Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticels. J Control Release 125:50–58

    Article  CAS  Google Scholar 

  • Armstrong RW, Baschung B, Booth DW, Samirant M (2003) Enhanced propellant combustion with nanoparticles. Nano Lett 3:253–255

    Article  CAS  Google Scholar 

  • Bu XH, Liu FY, Zhang ZW, Wang ZZ, Liu JH, Liu W (2018) Facile synthesis of flower-like ZnO@Fe2O3 hierarchical nanostructures with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Mater Lett 219:33–36

    Article  CAS  Google Scholar 

  • Chen P, Xing X, Xie HF, Sheng Q, Qu HX (2016) High catalytic activity of magnetic CuFe2O4/graphene oxide composite for the degradation of organic dyes under visible light irradiation. Chem Phys Lett 660:176–181

    Article  CAS  Google Scholar 

  • Ding GH, Zhang NN, Wang CC, Li XY, Zhang J, Li WR, Li RJ, Yang ZN (2018) Effect of the size on the aggregation and sedimentation of graphene oxide in seawaters with different salinities. J Nanopart Res 20:313–322

    Article  Google Scholar 

  • Ebrahim AG, Shaabani B, Khodayari A, Yashar AK, Rahimi R (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol 217:330–339

    Article  Google Scholar 

  • Fitzgerald RP, Brewster MQ (2004) Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame 3:313–326

    Article  Google Scholar 

  • IIhan S, Izotova SG, Komlev AA (2015) Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram Int 41:577–585

    Article  Google Scholar 

  • Kapoor IPS, Srivastava P, Singh G (2009) Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech 34:351–356

    Article  CAS  Google Scholar 

  • Kim KJ, Lee JH, Lee SH (2004) Magneto-optical investigation of spinel ferrite CuFe2O4: observation of Jahn-Teller effect in Cu2+ ion. J Magn Magn Mater 279:173–177

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structure analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49

    Article  CAS  Google Scholar 

  • Kurian J, Mathew MJ (2017) A facile approach to the elucidation of magnetic parameters of CuFe2O4 nanoparticles synthesized by hydrothermal route. J Magn Magn Mater 428:204–212

    Article  CAS  Google Scholar 

  • Lan YF, Li XY, Li GP, Luo YJ (2015) Sol-gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J Nanopart Res 17:395–403

    Article  Google Scholar 

  • Li BX, Liu TX, Wang YF, Wang ZF (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 377:114–121

    Article  CAS  Google Scholar 

  • Li N, Geng ZF, Cao MH, Ren L, Zhao XY, Liu B, Tian Y, Hu CW (2013) Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54:124–132

    Article  CAS  Google Scholar 

  • Li HY, Sun C, Zhao Y, Xu XJ, HW Y (2018) Facile synthesis of recyclable Co3O4/Co(OH)2/RGO ternary heterostructures with synergistic effect for photocatalysis. J Nanopart Res 20:279–291

    Article  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Meidanchi A, Akhavan O (2014) Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewarter purification. Carbon 69:230–238

    Article  CAS  Google Scholar 

  • Nedkov I, Vandenberghe RE, Marinova T, Thailhades P, Merodiiska T, Avramova I (2006) Magnetic structure and collective Jahn-Teller distortions in nanostructured particles of CuFe2O4. Appl Surf Sci 253:2589–2596

    Article  CAS  Google Scholar 

  • Noor-ul A, Shaheen W, Bashir B, Abdelsalam NM, Warsi MF, Khan MA, Shahid M (2016) Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceram Int 42:12401–12408

    Article  Google Scholar 

  • Ozawa T (1965) A new method of analyzing thermo-gravimetric data. Bull Chem Soc Jpn 38:1881–1885

    Article  CAS  Google Scholar 

  • Phuruangrat A, Kuntalue B, Thongtem S, Thongtem T (2016) Synthesis of cubic CuFe2O4 nanoparticles by microwave-hydrothermal method and their magnetic properties. Mater Lett 167:65–68

    Article  CAS  Google Scholar 

  • Rashad MM, Mohamed RM, Ibrahim MA, Ismail LFM, Abdel-Aal EA (2012) Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv Powder Technol 23:315–323

    Article  CAS  Google Scholar 

  • Shu RW, Zhang GY, Wang X, Gao X, Wang M, Gan Y, Shi JJ, He J (2018) Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem Eng J 337:242–255

    Article  CAS  Google Scholar 

  • Singh G, Kapoor IPS, Mannan SM, Kaur J (2000) Studies on energetic compounds Part 8: thermolysis of salts of HNO3 and HClO4. J Hazard Mater A79:1–18

    Article  Google Scholar 

  • Sultan M, Singh R (2009) Magnetization and crystal structure of RF-sputtered nanocrystalline CuFe2O4 thin films. Mater Lett 63:1764–1766

    Article  CAS  Google Scholar 

  • Tang MY, Xia FL, Gao CJ, Qiu HX (2016) Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. Int J Hydrog Energy 41:13058–13068

    Article  CAS  Google Scholar 

  • Tao Y, Zhang JL, Yang YY, Wu HX, Hu L, Dong XH, Lu J, Guo SW (2017) Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots. RSC Adv 7:1718–1723

    Article  CAS  Google Scholar 

  • Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30:6556–6564

    Article  CAS  Google Scholar 

  • Yeh CL, Shen YG (2008) Effects of TiC addition on formation of Ti3SiC2 by self-propagating high-temperatures synthesis. J Alloys Compd 458:286–291

    Article  CAS  Google Scholar 

  • Yuan Y, Wei J, Wang YJ, Shen P, Li FS, Li PY, Zhao FQ, Gao HX (2014) Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 303:354–359

    Article  CAS  Google Scholar 

  • Zhang Y, Wei TT, Xu KZ, Ren ZY, Xiao LB, Song JR, Zhao FQ (2015) Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7. RSC Adv 5:75630–75635

    Article  CAS  Google Scholar 

  • Zhang N, Huang Y, Zong M, Ding X, Li SP, Wang MY (2016a) Synthesis of core-shell ZnFe2O4@SiO2 hollow microspheres/reduced graphene oxides for high-performance EM wave absorber. Ceram Int 42:18879–18886

    Article  CAS  Google Scholar 

  • Zhang TF, Ma Z, Li GP, Wang Z, Zhao BB, Luo YJ (2016b) Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT). J Solid State Chem 237:394–403

    Article  CAS  Google Scholar 

  • Zhou X, Li XW, Sun HB, Sun P, Liang XS, Liu FM, Hu XL, Lu GY (2015) Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl Mater Interfaces 7:15414–15421

    Article  CAS  Google Scholar 

  • Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010a) Graphene and graphene oxide: synthesis, preparation, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  • Zhu JW, Zeng GY, Nie FD, Xu XM, Chen S, Han QF, Wang X (2010b) Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. Nanoscale 2:988–994

    Article  CAS  Google Scholar 

  • Zu YQ, Zhao YQ, Xu KZ, Tong Y, Zhao FQ (2016) Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites. Ceram Int 42:18844–18850

    Article  CAS  Google Scholar 

Download references

Funding

This investigation received financial assistance from the National Defense Key Laboratory of China and the Natural Science Foundation of Shaanxi Province (2018JM5181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangzhen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wang, W., Wang, J. et al. Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition. J Nanopart Res 21, 48 (2019). https://doi.org/10.1007/s11051-019-4493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4493-6

Keywords

Navigation