Skip to main content
Log in

Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The synthesis of a composite of cobalt phosphide nanowires and reduced graphene oxide (denoted CoP/RGO) via a facile hydrothermal method combined with a subsequent annealing step is reported. The resulting composite presents large specific surface area and enhanced conductivity, which can effectively facilitate charge transport and accommodates variations in volume during the lithiation/de-lithiation processes. As a result, the CoP/RGO nanocomposite manifests a high reversible specific capacity of 960 mA·h·g–1 over 200 cycles at a current density of 0.2 A·g–1 (297 mA·h·g–1 over 10,000 cycles at a current density of 20 A·g–1) and excellent rate capability (424 mA·h·g–1 at a current density of 10 A·g–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  3. Wang, H. J.; Dai, H. J. Strongly coupled inorganic–nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  4. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  5. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

  6. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  7. Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  8. Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.

    Article  Google Scholar 

  9. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

    Article  Google Scholar 

  10. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, 170–192.

    Article  Google Scholar 

  11. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  12. Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.

    Article  Google Scholar 

  13. Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.

    Article  Google Scholar 

  14. Tian, J. Q.; Liu, Q.; Liang, Y. H.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces 2014, 6, 20579–20584.

    Article  Google Scholar 

  15. Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Xing, W.; Sun, X. P. Cobalt phosphide nanowires: Efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem., Int. Ed. 2015, 54, 5493–5497.

    Article  Google Scholar 

  16. Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1093–1099.

    Article  Google Scholar 

  17. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated highperformance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  18. Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

    Article  Google Scholar 

  19. Zhang, Z. S.; Yang, J.; Nuli, Y.; Wang, B. F.; Xu, J. Q. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics 2005, 176, 693–697.

    Article  Google Scholar 

  20. Yang, Z. H.; Liu, L.; Wang, X. Y.; Yang, S. Y.; Su, X. P. Stability and electronic structure of the Co–P compounds from first-principle calculations. J. Alloys Compd. 2011, 509, 165–171.

    Article  Google Scholar 

  21. Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.

    Article  Google Scholar 

  22. Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y.-K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

    Article  Google Scholar 

  23. Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene and their integrated electrodes. Nano Today 2014, 9, 785–807.

    Article  Google Scholar 

  24. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  25. Geng, J. X.; Jung, H. T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010, 114, 8227–8234.

    Article  Google Scholar 

  26. Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)· 0.11H2O nanowires with improved supercapacitive properties. Nanoscale 2012, 4, 2145–2149.

    Article  Google Scholar 

  27. Gong, Y. J.; Yang, S. B.; Zhan, L.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 2014, 24, 125–130.

    Google Scholar 

  28. Shi, Y.; Wang, J. Z.; Chou, S. L.; Wexler, D.; Li, H. J.; Ozawa, K.; Liu, H. K.; Wu, Y. P. Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 2013, 13, 4715–4720.

    Article  Google Scholar 

  29. Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energystorage devices. Adv. Mater. 2009, 21, 2710–2714.

    Article  Google Scholar 

  30. Li, Y. Z.; Zhou, Z.; Gao, X. P.; Yan, J. A novel sol-gel method to synthesize nanocrystalline LiVPO4F and its electrochemical Li intercalation performances. J. Power Sources 2006, 160, 633–637.

    Article  Google Scholar 

  31. Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

    Article  Google Scholar 

  32. Zhou, G. M.; Wang, D. W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223.

    Article  Google Scholar 

  33. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  Google Scholar 

  34. López, M. C.; Ortiz, G. F.; Tirado, J. L. A functionalized Co2P negative electrode for batteries demanding high Lipotential reaction. J. Electrochem. Soc. 2012, 159, A1253–A1261.

    Article  Google Scholar 

  35. Lu, Y.; Tu, J. P.; Xiang, J. Y.; Wang, X. L.; Zhang, J.; Mai, Y. J.; Mao, S. X. Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for lithium ion batteries. J. Phys. Chem. C 2011, 115, 23760–23767.

    Article  Google Scholar 

  36. Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D.; Mao, S. X. Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation: A new class of nanowires with exceptionally improved electrochemical performance as a negative electrode. RSC Adv. 2012, 2, 3430–3436.

    Article  Google Scholar 

  37. Carenco, S.; Surcin, C.; Morcrette, M.; Larcher, D.; Mézailles, N.; Boissière, C.; Sanchez, C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem. Mater. 2012, 24, 688–697.

    Article  Google Scholar 

  38. Boyanov, S.; Zitoun, D.; Ménétrier, M.; Jumas, J. C.; Womes, M.; Monconduit, L. Comparison of the electrochemical lithiation/delitiation mechanisms of FePx (x = 1, 2, 4) based electrodes in Li-ion batteries. J. Phys. Chem. C 2009, 113, 21441–21452.

    Article  Google Scholar 

  39. Zhou, J.; Tian, G. H.; Chen, Y. J.; Meng, X. Y.; Shi, Y. H.; Cao, X. R.; Pan, K.; Fu, H. G. In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem. Commun. 2013, 49, 2237–2239.

    Article  Google Scholar 

  40. Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.

    Article  Google Scholar 

  41. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

    Article  Google Scholar 

  42. Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Graphene: A two-dimensional platform for lithium storage. Small 2013, 9, 1173–1187.

    Article  Google Scholar 

  43. Liu, R.; Duay, J.; Lee, S. B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 2011, 47, 1384–1404.

    Article  Google Scholar 

  44. Wu, C. Z.; Yin, P.; Zhu, X.; Ouyang, C. Z.; Xie, Y. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 2006, 110, 17806–17812.

    Article  Google Scholar 

  45. Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

    Article  Google Scholar 

  46. Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

    Article  Google Scholar 

  47. Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 8916–8921.

    Article  Google Scholar 

  48. Wang, L.; Dong, Z. H.; Wang, Z. G.; Zhang, F. X.; Jin, J. Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 2013, 23, 2758–2764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyu Yan or Xiaochen Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, Y., Sun, C. et al. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 9, 612–621 (2016). https://doi.org/10.1007/s12274-015-0941-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0941-5

Keywords

Navigation