Skip to main content
Log in

Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large-scale exfoliation of defect-free and few-layer graphene by an inexpensive and environmentally-friendly route has been a significant challenge for a long time. Here we show that high-quality, few-layer graphene with high stability and low defect content can be obtained from natural graphite via a simple stirring process in urea/glycerol, with yields of up to 12 wt.%. We also demonstrate that this facile method can be applied to the exfoliation of other two-dimensional materials, such as molybdenum disulfide and boron nitride. The as-prepared graphene was further composited with polyvinylidene fluoride (PVDF) and the composite exhibited a low percolation threshold of 0.05 vol.%. The incorporation of low (4.5 vol.%) graphene amounts led to a significant increase in the thermal conductivity of the graphene–PVDF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oostinga, J. B.; Heersche, H. B.; Liu, X. L.; Morpurgo, A. F.; Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 2008, 7, 151–157.

    Article  Google Scholar 

  2. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  4. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  5. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  Google Scholar 

  6. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 2014, 13, 624–630.

    Article  Google Scholar 

  7. Li, Y.; Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010, 3, 429–437.

    Article  Google Scholar 

  8. Zhang, D. D.; Fu, L.; Liao, L.; Liu, N.; Dai, B. Y.; Zhang, C. X. Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res. 2012, 5, 875–887.

    Article  Google Scholar 

  9. Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 2012, 3, 2928–2933.

    Article  Google Scholar 

  10. Englert, J. M.; Röhrl, J.; Schmidt, C. D.; Graupner, R.; Hundhausen, M.; Hauke, F.; Hirsch, A. Soluble graphene: Generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater. 2009, 21, 4265–4269.

    Article  Google Scholar 

  11. Chen, J. P.; Shi, W. L.; Fang, D.; Wang, T.; Huang, J.; Li, Q.; Jiang, M.; Liu, L.; Li, Q.; Dong, L. J. et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon 2015, 94, 405–411.

    Article  Google Scholar 

  12. Chaban, V. V.; Prezhdo, O. V. Ionic and molecular liquids: Working together for robust engineering. J. Phys. Chem. Lett. 2013, 4, 1423–1431.

    Article  Google Scholar 

  13. Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 2012, 6, 8857–8867.

    Article  Google Scholar 

  14. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  Google Scholar 

  15. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  Google Scholar 

  16. Manna, K.; Huang, H. N.; Li, W. T.; Ho, Y. H.; Chiang, W. H. Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chem. Mater. 2016, 28, 7586–7593.

    Article  Google Scholar 

  17. Oyer, A. J.; Carrillo, J.M. Y.; Hire, C. C.; Schniepp, H. C.; Asandei, A. D.; Dobrynin, A. V.; Adamson, D. H. Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent. J. Am. Chem. Soc. 2012, 134, 5018–5021.

    Article  Google Scholar 

  18. Peng, L.; Xu, Z.; Liu, Z.; Wei, Y. Y.; Sun, H. Y.; Li, Z.; Zhao, X. L.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716.

    Article  Google Scholar 

  19. He, P.; Zhou, C.; Tian, S. Y.; Sun, J.; Yang, S. W.; Ding, G. Q.; Xie, X. M.; Jiang, M. H. Urea-assisted aqueous exfoliation of graphite for obtaining high-quality graphene. Chem. Commun. 2015, 51, 4651–4654.

    Article  Google Scholar 

  20. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.

    Article  Google Scholar 

  21. Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J. Phys. Condens. Matter 2008, 20, 472204.

    Article  Google Scholar 

  22. Wanko, M.; Cahangirov, S.; Shi, L.; Rohringer, P.; Lapin, Z. J.; Novotny, L.; Ayala, P.; Pichler, T.; Rubio, A. Polyyne electronic and vibrational properties under environmental interactions. Phys. Rev. B 2016, 94, 195422.

    Article  Google Scholar 

  23. Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

    Article  Google Scholar 

  24. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  Google Scholar 

  25. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  26. Adelhelm, P.; de Jong, K. P.; de Jongh, P. E. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem. Commun. 2009, 6261–6263.

    Google Scholar 

  27. Das, A.; Chakraborty, B.; Sood, A. K. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579–584.

    Article  Google Scholar 

  28. Li, B.; Zhou, L.; Wu, D.; Peng, H. L.; Yan, K.; Zhou, Y.; Liu, Z. F. Photochemical chlorination of graphene. ACS Nano 2011, 5, 5957–5961.

    Article  Google Scholar 

  29. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  30. Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

    Article  Google Scholar 

  31. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  32. Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping dependence of the raman spectrum of defected graphene. Acs Nano 2014, 8, 7432–7441.

    Article  Google Scholar 

  33. Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y. H.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. NanoRes. 2010, 3, 661–669.

    Google Scholar 

  34. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  Google Scholar 

  35. Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47, 3288–3294.

    Article  Google Scholar 

  36. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. NanoLett. 2011, 11, 3190–3196.

    Article  Google Scholar 

  37. Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the ‘bottom-up’synthesis of few-layer graphene platelets and thin films. J. Mater. Chem. 2011, 21, 3378–3383.

    Article  Google Scholar 

  38. Chen, J. P.; Shi, W. L.; Chen, Y. M.; Yang, Q. L.; Wang, M. K.; Liu, B.; Tang, Z.; Jiang, M.; Fang, D.; Xiong, C. X. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment. Appl. Phys. Lett. 2016, 108, 073105.

    Article  Google Scholar 

  39. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S. Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

    Article  Google Scholar 

  40. Levy, F. L. A modified Maxwell–Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int. J. Refrig. 1981, 4, 223–225.

    Article  Google Scholar 

  41. Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712.

    Article  Google Scholar 

  42. Kumlutaş, D.; Tavman, İ. H.; Çoban, M. T. Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 2003, 63, 113–117.

    Article  Google Scholar 

  43. Hatta, H.; Taya, M.; Kulacki, F. A.; Harder, J. F. Thermal diffusivities of composites with various types of filler. J.Compos. Mater. 1992, 26, 612–625.

    Article  Google Scholar 

  44. Zhou, S. X.; Xu, J. Z.; Yang, Q. H.; Chiang, S.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 2013, 57, 452–459.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51201117, 51673154). Thanks to M. S. Bin Liu, M. S. Yu Yan, Mr. Hao Chen, Mr. Zhen Tang. We appreciate Prof. Zhenya Sun, Dr. Xiaoqing Liu, Dr. De Fang, M. S. Yi Guo, M. S. Tingting Luo and other Lab Technician of the Center for Materials Research and Analysis of Wuhan University of Technology for materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanling Yang or Chuanxi Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Shi, W., Gao, Z. et al. Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Res. 11, 820–830 (2018). https://doi.org/10.1007/s12274-017-1691-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1691-3

Keywords

Navigation