Skip to main content
Log in

Topology Optimization to Fracture Resistance: A Review and Recent Developments

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Topology optimization (TO) methods for fracture resistance offer new possibilities for designing stronger structures or materials with lower masses than conventional designs. This article presents an overview of TO techniques for fracture resistance, from pioneering works to the most recent developments at the time of writing. We first review stress-based methods, which were the forerunners of crack resistance methods, producing optimal designs that prevent any damage or crack initiation. Other works followed, taking into account the presence of defects or cracks in structures, but using classical approaches aimed at minimizing compliance in an elastic framework. TO methods for fatigue damage are also an important branch of these approaches and are reviewed. We then present more recent methodologies, including non-linear effects in structural design, such as plasticity and damage. Finally, we describe the latest methods of TO design for fracture resistance, including an explicit description of crack propagation during loading, from initiation to failure of structures and materials. In particular, the design of two-phase materials that are more resistant to cracking and that can be manufactured by 3D printing is discussed. The article concludes with some challenges and promising avenues for the coming years in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. By critical, we mean the stress concentration directly contributing to crack initiation.

References

  1. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  2. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  4. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252

    Article  Google Scholar 

  5. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  6. Querin OM, Young V, Steven GP, Xie YM (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods Appl Mech Eng 189(2):559–573

    Article  Google Scholar 

  7. Li Y, Xie YM (2021) Evolutionary topology optimization for structures made of multiple materials with different properties in tension and compression. Compos Struct 259:113497

    Article  Google Scholar 

  8. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  Google Scholar 

  9. Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  Google Scholar 

  10. Takezawa Akihiro, Nishiwaki Shinji, Kitamura Mitsuru (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  Google Scholar 

  11. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  12. Liu C, Du Z, Zhu Y, Zhang W, Zhang X, Guo X (2020) Optimal design of shell-graded-infill structures by a hybrid MMC-MMV approach. Comput Methods Appl Mech Eng 369:113187

    Article  MathSciNet  Google Scholar 

  13. Da D, Xia L, Li G, Huang X (2018) Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct Multidiscip Optim 57:2143–2159

    Article  MathSciNet  Google Scholar 

  14. Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MathSciNet  Google Scholar 

  15. van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  16. Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595–622

    Article  MathSciNet  Google Scholar 

  17. Wang C, Zhao Z, Zhou M, Sigmund O, Zhang XS (2021) A comprehensive review of educational articles on structural and multidisciplinary optimization. Structural and Multidisciplinary Optimization 64:2827–2880

    Article  Google Scholar 

  18. Wang Y, Li X, Long K, Wei P (2023) Open-source codes of topology optimization: a summary for beginners to start their research. CMES Comput Model Eng Sci 137(1):1–34

    Google Scholar 

  19. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  20. James KA, Waisman H (2015) Topology optimization of structures under variable loading using a damage superposition approach. Int J Numer Methods Eng 101(5):375–406

    Article  MathSciNet  Google Scholar 

  21. Lu G, Yu TX (2003) Energy absorption of structures and materials. Elsevier, Amsterdam

    Book  Google Scholar 

  22. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Ds Hui (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites B Eng 143:172–196

    Article  Google Scholar 

  23. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Composites B Eng 110:442–458

    Article  Google Scholar 

  24. Kao YT, Zhang Y, Wang J, Tai BL (2016) Loading-unloading cycles of 3D-printing built bi-material structures with ceramic and elastomer. In: International manufacturing science and engineering conference, vol 49910. American Society of Mechanical Engineers, New York, p V003T08A008

  25. Amin AR, Kao YT, Tai BL, Wang J (2017) Dynamic response of 3D-printed bi-material structure using drop weight impact test. In: International manufacturing science and engineering conference, vol 50732. American Society of Mechanical Engineers, New York, p V002T01A021

  26. Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min Sci 41:478–483

    Article  Google Scholar 

  27. Ludwig C, Rabold F, Kuna M, Schurig M, Schlums H (2020) Simulation of anisotropic crack growth behavior of nickel base alloys under thermomechanical fatigue. Eng Fract Mech 224:106800

    Article  Google Scholar 

  28. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  29. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–156

    Article  MathSciNet  Google Scholar 

  30. Daux C, Moës N, Dolbow J, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  Google Scholar 

  31. Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets. Part II: level set update. Int J Numer Methods Eng 53(11):2569–86

    Article  Google Scholar 

  32. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  Google Scholar 

  33. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MathSciNet  Google Scholar 

  34. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  Google Scholar 

  35. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2776–2778

    Article  MathSciNet  Google Scholar 

  36. Xia L, Da D, Yvonnet J (2018) Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Comput Methods Appl Mech Eng 332:234–254

    Article  MathSciNet  Google Scholar 

  37. Desmorat B, Desmorat R (2008) Topology optimization in damage governed low cycle fatigue. CR Mec 336(5):448–453

    Article  Google Scholar 

  38. Lew AJ, Buehler MJ (2021) A deep learning augmented genetic algorithm approach to polycrystalline 2D material fracture discovery and design. Appl Phys Rev 8(4):041414

    Article  Google Scholar 

  39. Khimin D, Steinbach MC, Wick T (2022) Space–time formulation, discretization, and computational performance studies for phase-field fracture optimal control problems. J Comput Phys 470:111554

    Article  MathSciNet  Google Scholar 

  40. Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2–3):98–105

    Article  Google Scholar 

  41. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MathSciNet  Google Scholar 

  42. Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48:33–47

    Article  MathSciNet  Google Scholar 

  43. Emmendoerfer H Jr, Fancello EA (2014) A level set approach for topology optimization with local stress constraints. Int J Numer Methods Eng 99(2):129–156

    Article  MathSciNet  Google Scholar 

  44. Jeong SH, Yoon GH, Takezawa A, Choi D-H (2014) Development of a novel phase-field method for local stress-based shape and topology optimization. Comput Struct 132:84–98

    Article  Google Scholar 

  45. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36:125–141

    Article  MathSciNet  Google Scholar 

  46. Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75

    Article  Google Scholar 

  47. Verbart A, Langelaar M, van Keulen F (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidiscip Optim 53:1081–1098

    Article  MathSciNet  Google Scholar 

  48. Long K, Wang X, Liu H (2019) Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming. Struct Multidiscip Optim 59:1747–1759

    Article  MathSciNet  Google Scholar 

  49. Giraldo-Londono O, Paulino GH (2021) Polystress: a Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method. Struct Multidiscip Optim 63:2065–2097

    Article  MathSciNet  Google Scholar 

  50. Nguyen SH, Kim HG (2020) Stress-constrained shape and topology optimization with the level set method using trimmed hexahedral meshes. Comput Methods Appl Mech Eng 366:113061

    Article  MathSciNet  Google Scholar 

  51. McBane S, Choi Y, Willcox K (2022) Stress-constrained topology optimization of lattice-like structures using component-wise reduced order models. Comput Methods Appl Mech Eng 400:115525

    Article  MathSciNet  Google Scholar 

  52. Kundu RD, Li W, Zhang XS (2022) Multimaterial stress-constrained topology optimization with multiple distinct yield criteria. Extreme Mech Lett 54:101716

    Article  Google Scholar 

  53. Norato JA, Smith HA, Deaton JD, Kolonay RM (2022) A maximum-rectifier-function approach to stress-constrained topology optimization. Struct Multidiscip Optim 65(10):286

    Article  MathSciNet  Google Scholar 

  54. Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98

    Article  MathSciNet  Google Scholar 

  55. Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  Google Scholar 

  56. Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64

    Article  Google Scholar 

  57. Cai S, Zhang W, Zhu J, Gao T (2014) Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level set function. Comput Methods Appl Mech Eng 278:361–387

    Article  MathSciNet  Google Scholar 

  58. Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von Mises stress. Struct Multidiscip Optim 55:1541–1557

    Article  MathSciNet  Google Scholar 

  59. Picelli R, Townsend S, Brampton C, Norato J, Kim HA (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23

    Article  MathSciNet  Google Scholar 

  60. Xia L, Zhang L, Xia Q, Shi T (2018) Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Methods Appl Mech Eng 333:356–370

    Article  MathSciNet  Google Scholar 

  61. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620

    Article  Google Scholar 

  62. Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111(3):247–272

    Article  MathSciNet  Google Scholar 

  63. Wang C, Qian X (2018) Heaviside projection-based aggregation in stress-constrained topology optimization. Int J Numer Methods Eng 115(7):849–871

    Article  MathSciNet  Google Scholar 

  64. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1–2):50–66

    Article  MathSciNet  Google Scholar 

  65. da Silva G, Aage N, Beck AT, Sigmund O (2021) Three-dimensional manufacturing tolerant topology optimization with hundreds of millions of local stress constraints. Int J Numer Methods Eng 122(2):548–578

    Article  MathSciNet  Google Scholar 

  66. Giraldo-Londono O, Paulino GH (2020) A unified approach for topology optimization with local stress constraints considering various failure criteria: von Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler-Pister and Willam-Warnke. Proc R Soc A 476(2238):20190861

    Article  MathSciNet  Google Scholar 

  67. Giraldo-Londono O, Aguiló MA, Paulino GH (2021) Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach. Struct Multidiscip Optim 64:3287–3309

    Article  MathSciNet  Google Scholar 

  68. da Silva G, Beck AT (2018) Reliability-based topology optimization of continuum structures subject to local stress constraints. Struct Multidiscip Optim 57:2339–2355

    Article  MathSciNet  Google Scholar 

  69. da Silva G, Beck AT, Sigmund O (2019) Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput Methods Appl Mech Eng 344:512–537

    Article  MathSciNet  Google Scholar 

  70. da Silva G, Aage N, Beck AT, Sigmund O (2021) Local versus global stress constraint strategies in topology optimization: a comparative study. Int J Numer Methods Eng 122(21):6003–6036

    Article  MathSciNet  Google Scholar 

  71. Da D, Chen W (2023) Simple strategy toward tailoring fracture properties of brittle architected materials. Int J Numer Methods Eng 124(2):334–357

    Article  MathSciNet  Google Scholar 

  72. Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439–3452

    Article  MathSciNet  Google Scholar 

  73. Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413

    Article  MathSciNet  Google Scholar 

  74. Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714

    Article  MathSciNet  Google Scholar 

  75. Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57:17–38

    Article  MathSciNet  Google Scholar 

  76. Yang D, Liu H, Zhang W, Li S (2018) Stress-constrained topology optimization based on maximum stress measures. Comput Struct 198:23–39

    Article  Google Scholar 

  77. Granlund G, Wallin M, Tortorelli D, Watts S (2023) Stress-constrained topology optimization of structures subjected to nonproportional loading. Int J Numer Methods Eng 124(12):2818–2836

    Article  MathSciNet  Google Scholar 

  78. Ogawa S, Yamada T (2023) Stress constraint topology optimization of coupled thermo-mechanical problems using the temperature dependence of allowable stress. Comput Struct 281:107006

    Article  Google Scholar 

  79. Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46:369–384

    Article  MathSciNet  Google Scholar 

  80. Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimization: a topological level-set approach. Struct Multidiscip Optim 48:295–309

    Article  MathSciNet  Google Scholar 

  81. Boissier M, Deaton JD, Beran N, Vermaak PA (2021) Elastoplastic topology optimization of cyclically loaded structures via direct methods for shakedown. Struct Multidiscip Optim 64:189–217

    Article  MathSciNet  Google Scholar 

  82. Fan Z, Xia L, Lai W, Xia Q, Shi T (2019) Evolutionary topology optimization of continuum structures with stress constraints. Struct Multidiscip Optim 59:647–658

    Article  MathSciNet  Google Scholar 

  83. Chen A, Cai K, Zhao Z-L, Zhou Y, Xia L, Xie YM (2021) Controlling the maximum first principal stress in topology optimization. Struct Multidiscip Optim 63:327–339

    Article  Google Scholar 

  84. Ho-Nguyen-Tan T, Kim H-G (2022) Level set-based topology optimization for compliance and stress minimization of shell structures using trimmed quadrilateral shell meshes. Comput Struct 259:106695

    Article  Google Scholar 

  85. Da D, Chan YC, Wang I, Chen W (2022) Data-driven and topological design of structural metamaterials for fracture resistance. Extreme Mech Lett 50:101528

    Article  Google Scholar 

  86. Challis VJ, Roberts AP, Wilkins AH (2008) Fracture resistance via topology optimization. Struct Multidiscip Optim 36:263–271

    Article  MathSciNet  Google Scholar 

  87. Jansen M, Lombaert G, Schevenels M, Sigmund O (2014) Topology optimization of fail-safe structures using a simplified local damage model. Struct Multidiscip Optim 49:657–666

    Article  MathSciNet  Google Scholar 

  88. Shobeiri V (2015) The topology optimization design for cracked structures. Eng Anal Bound Elem 58:26–38

    Article  MathSciNet  Google Scholar 

  89. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  90. Gu GX, Dimas L, Qin Z, Buehler MJ (2016) Optimization of composite fracture properties: method, validation, and applications. J Appl Mech 83(7):071006

    Article  Google Scholar 

  91. Gu GX, Wettermark S, Buehler MJ (2017) Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing. Addit Manuf 17:47–54

    Google Scholar 

  92. Kang Z, Liu P, Li M (2017) Topology optimization considering fracture mechanics behaviors at specified locations. Struct Multidiscip Optim 55:1847–1864

    Article  MathSciNet  Google Scholar 

  93. Banh TT, Lee D (2018) Multi-material topology optimization design for continuum structures with crack patterns. Compos Struct 186:193–209

    Article  Google Scholar 

  94. Banh TT, Luu NG, Lee D (2021) A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks. Compos Struct 273:114230

    Article  Google Scholar 

  95. Hu J, Yao S, Gan N, Xiong Y, Chen X (2019) Fracture strength topology optimization of structural specific position using a bi-directional evolutionary structural optimization method. Eng Optim 52(4):583–602

    Article  MathSciNet  Google Scholar 

  96. Klarbring A, Torstenfelt B, Edlund U, Schmidt P, Simonsson K, Ansell H (2018) Minimizing crack energy release rate by topology optimization. Struct Multidiscip Optim 58:1695–1703

    Article  MathSciNet  Google Scholar 

  97. Marbœuf A, Budinger M, Pommier-Budinger V, Palanque V, Bennani L (2022) Improving mechanical ice protection systems with topology optimization. Struct Multidiscip Optim 65(5):147

    Article  Google Scholar 

  98. Silling AS (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  Google Scholar 

  99. Kefal A, Sohouli A, Oterkus E, Yildiz M, Suleman A (2019) Topology optimization of cracked structures using peridynamics. Continuum Mech Thermodyn 31:1645–1672

    Article  MathSciNet  Google Scholar 

  100. Sohouli A, Kefal A, Abdelhamid A, Yildiz M, Suleman A (2020) Continuous density-based topology optimization of cracked structures using peridynamics. Struct Multidiscip Optim 62:2375–2389

    Article  MathSciNet  Google Scholar 

  101. Lahe Motlagh P, Kefal A (2021) Comparative study of peridynamics and finite element method for practical modeling of cracks in topology optimization. Symmetry 13(8):1407

    Article  Google Scholar 

  102. Kendibilir A, Kefal A, Sohouli A, Yildiz M, Koc B, Suleman A (2022) Peridynamics topology optimization of three-dimensional structures with surface cracks for additive manufacturing. Comput Methods Appl Mech Eng 401:115665

    Article  MathSciNet  Google Scholar 

  103. Chen Z, Long K, Wen P, Nouman S (2020) Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Adv Eng Softw 150:102924

    Article  Google Scholar 

  104. Hou J, Zhu J, Wang J, Zhang W (2018) Topology optimization of the multi-fasteners jointed structure considering fatigue constraints. Int J Simul Multidiscip Des Optim 9:A4

    Article  Google Scholar 

  105. Lemaitre J, Chaboche J (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    Google Scholar 

  106. Lemaitre J, Desmorat R (2006) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin

    Google Scholar 

  107. Mrzyglod M, Zielinski AP (2007) Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion. Struct Multidiscip Optim 33:161–171

    Article  Google Scholar 

  108. Sines G (1959) Behavior of metals under complex static and alternating stresses. Met Fatigue 1:145–169

    Google Scholar 

  109. Crossland B (1956) Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of the international conference on fatigue of metals, vol 138. Institution of Mechanical Engineers, London, p 12

  110. Van K, Griveau B (1989) On a new multiaxial fatigue limit criterion—theory and application. Biaxial and multiaxial fatigue (A 90-16739 05-39). Mechanical Engineering Publications, London, pp 479–496

  111. Mrzygłód M (2010) Two-stage optimization method with fatigue constraints for thin-walled structures. J Theor Appl Mech 48(3):567–578

    Google Scholar 

  112. Sherif K, Witteveen W, Puchner K, Irschik H (2010) Efficient topology optimization of large dynamic finite element systems using fatigue. AIAA J 48(7):1339–1347

    Article  Google Scholar 

  113. Choi WS, Park GJ (1999) Transformation of dynamic loads into equivalent static loads based on modal analysis. Int J Numer Methods Eng 46(1):29–43

    Article  Google Scholar 

  114. Jeong SH, Choi DH, Yoon GH (2015) Fatigue and static failure considerations using a topology optimization method. Appl Math Model 39(3–4):1137–1162

    Article  Google Scholar 

  115. Lee JW, Yoon GH, Jeong SH (2015) Topology optimization considering fatigue life in the frequency domain. Comput Math Appl 70(8):1852–1877

    Article  MathSciNet  Google Scholar 

  116. Jeong SH, Lee JW, Yoon GH, Choi DH (2018) Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach. Appl Math Model 56:626–647

    Article  MathSciNet  Google Scholar 

  117. Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained topology optimization. Struct Multidiscip Optim 50:207–219

    Article  MathSciNet  Google Scholar 

  118. Oest J, Lund E (2017) Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim 56:1045–1059

    Article  MathSciNet  Google Scholar 

  119. Suresh S, Lindström SB, Thore C-J, Torstenfelt B, Klarbring A (2020) Topology optimization using a continuous-time high-cycle fatigue model. Struct Multidiscip Optim 61:1011–1025

    Article  MathSciNet  Google Scholar 

  120. Suresh S, Lindström SB, Thore CJ, Klarbring A (2022) Acceleration of continuous-time, high-cycle fatigue constrained problems in topology optimization. Eur J Mech A Solids 96:104723

    Article  MathSciNet  Google Scholar 

  121. Zhang S, Le C, Gain AL, Norato JA (2019) Fatigue-based topology optimization with non-proportional loads. Comput Methods Appl Mech Eng 345:805–825

    Article  MathSciNet  Google Scholar 

  122. Zhao L, Xu B, Han Y, Xue J, Rong J (2020) Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads. Eng Struct 205:110089

    Article  Google Scholar 

  123. Nabaki K, Shen J, Huang X (2019) Evolutionary topology optimization of continuum structures considering fatigue failure. Mater Des 166:107586

    Article  Google Scholar 

  124. Teng X, Wang C, Jiang X, Chen X (2023) Structural topology optimization with local finite-life fatigue constraints. Mathematics 11(5):1220

    Article  Google Scholar 

  125. Collet M, Bruggi M, Duysinx P (2017) Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidiscip Optim 55:839–855

    Article  MathSciNet  Google Scholar 

  126. Chen Y, Wang Q, Wang C, Gong P, Shi Y, Yu Y, Liu Z (2021) Topology optimization design and experimental research of a 3D-printed metal aerospace bracket considering fatigue performance. Appl Sci 11(15):6671

    Article  Google Scholar 

  127. Demir S, Kurt M, Kotil T (2022) Fatigue damage-based topology optimization of helicopter tail rotor pitch arm. J Aerosp Eng 35(5):04022073

    Article  Google Scholar 

  128. Niutta CB, Tridello A, Barletta G, Gallo N, Baroni A, Berto F, Paolino DS (2022) Defect-driven topology optimization for fatigue design of additive manufacturing structures: application on a real industrial aerospace component. Eng Fail Anal 142:106737

    Article  Google Scholar 

  129. Al-Ali MA, Al-Ali MA, Takezawa A, Kitamura M (2017) Topology optimization and fatigue analysis of temporomandibular joint prosthesis. World J Mech 7(12):323–339

    Article  Google Scholar 

  130. Olesen AM, Hermansen SM, Lund E (2021) Simultaneous optimization of topology and print orientation for transversely isotropic fatigue. Struct Multidiscip Optim 64:1041–1062

    Article  Google Scholar 

  131. Suresh S, Lindström SB, Thore CJ, Klarbring A (2021) Topology optimization for transversely isotropic materials with high-cycle fatigue as a constraint. Struct Multidiscip Optim 63:161–172

    Article  MathSciNet  Google Scholar 

  132. Trudel E, ElSayed MSA (2022) Penalization techniques for fatigue-based topology optimizations of structures with embedded functionally graded lattice materials. Int J Numer Methods Eng 123(9):1991–2011

    Article  MathSciNet  Google Scholar 

  133. Dagkolu A, Gokdag I, Yilmaz O (2021) Design and additive manufacturing of a fatigue-critical aerospace part using topology optimization and L-PBF process. Procedia Manuf 54:238–243

    Article  Google Scholar 

  134. Liu YJ, Ren DC, Li SJ, Wang H, Zhang LC, Sercombe TB (2020) Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Addit Manuf 32:101060

    Google Scholar 

  135. Barbier T, Shakour E, Sigmund O, Lombaert G, Schevenels M (2022) Topology optimization of damage-resistant structures with a predefined load-bearing capacity. Int J Numer Methods Eng 123(4):1114–1145

    Article  MathSciNet  Google Scholar 

  136. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15:81–91

    Article  Google Scholar 

  137. Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15–17):2135–2155

    Article  Google Scholar 

  138. Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52:507–526

    Article  MathSciNet  Google Scholar 

  139. Nakshatrala PB, Tortorelli DA (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326

    Article  MathSciNet  Google Scholar 

  140. Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54:783–793

    Article  MathSciNet  Google Scholar 

  141. Maury A, Allaire G, Jouve F (2018) Elasto-plastic shape optimization using the level set method. SIAM J Control Optim 56(1):556–581

    Article  MathSciNet  Google Scholar 

  142. Jia J, Da D, Hu J, Yin S (2021) Crashworthiness design of periodic cellular structures using topology optimization. Compos Struct 271:114164

    Article  Google Scholar 

  143. Achtziger W, Bendsøe MP (1995) Design for maximal flexibility as a simple computational model of damage. Struct Optim 10:258–268

    Article  Google Scholar 

  144. Bendsøe MP, Díaz AR (1998) A method for treating damage related criteria in optimal topology design of continuum structures. Struct Optim 16:108–115

    Article  Google Scholar 

  145. Amir O (2013) A topology optimization procedure for reinforced concrete structures. Comput Struct 114:46–58

    Article  Google Scholar 

  146. Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim 47:157–174

    Article  MathSciNet  Google Scholar 

  147. James KA, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631

    Article  MathSciNet  Google Scholar 

  148. Noël L, Duysinx P, Maute K (2017) Level set topology optimization considering damage. Struct Multidiscip Optim 56(4):737–753

    Article  MathSciNet  Google Scholar 

  149. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree HPJ (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(39):3391–3403

    Article  Google Scholar 

  150. Alberdi R, Khandelwal K (2017) Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des 133:42–61

    Article  MathSciNet  Google Scholar 

  151. Li L, Khandelwal K (2017) Design of fracture resistant energy absorbing structures using elastoplastic topology optimization. Struct Multidiscip Optim 56:1447–1475

    Article  MathSciNet  Google Scholar 

  152. Li L, Zhang G, Khandelwal K (2017) Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 112(7):737–775

    Article  MathSciNet  Google Scholar 

  153. Li L, Zhang G, Khandelwal K (2018) Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct Multidiscip Optim 58:1589–1618

    Article  MathSciNet  Google Scholar 

  154. Zhang G, Khandelwal K (2022) Gurson–Tvergaard–Needleman model guided fracture-resistant structural designs under finite deformations. Int J Numer Meth Eng 123(14):3344–3388

    Article  MathSciNet  Google Scholar 

  155. Zhang Z, Chen J, Li E, Li W, Swain M, Li Q (2016) Topological design of all-ceramic dental bridges for enhancing fracture resistance. Int J Numer Methods Biomed Eng 32(6):e02749

    Article  Google Scholar 

  156. Ambati M, Gerasimov T, de Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  Google Scholar 

  157. Wu JY, Nguyen VP, Nguyen CT, Sutula D, Bordas S, Sinaie S (2018) Phase field modeling of fracture. In: Advances in applied mechanics: multi-scale theory and computation, vol 52. Elsevier, Amsterdam

  158. Da D, Yvonnet J, Xia L, Li G (2018) Topology optimization of particle–matrix composites for optimal fracture resistance taking into account interfacial damage. Int J Numer Methods Eng 115(5):604–626

    Article  Google Scholar 

  159. Russ JB, Waisman H (2019) Topology optimization for brittle fracture resistance. Comput Methods Appl Mech Eng 347:238–263

    Article  MathSciNet  Google Scholar 

  160. Russ JB, Waisman H (2020) A novel topology optimization formulation for enhancing fracture resistance with a single quasi-brittle material. Int J Numer Methods Eng 121(13):2827–2856

    Article  MathSciNet  Google Scholar 

  161. Wu C, Fang J, Zhou S, Zhang Z, Sun G, Steven GP, Li Q (2021) A path-dependent level set topology optimization with fracture criterion. Comput Struct 249:106515

    Article  Google Scholar 

  162. Desai J, Allaire G, Jouve F (2022) Topology optimization of structures undergoing brittle fracture. J Comput Phys 458:111048

    Article  MathSciNet  Google Scholar 

  163. Jia Y, Lopez-Pamies O, Zhang XS (2023) Controlling the fracture response of structures via topology optimization: from delaying fracture nucleation to maximizing toughness. J Mech Phys Solids 173:105227

    Article  MathSciNet  Google Scholar 

  164. Li P, Yvonnet J, Wu Y (2022) Improved fracture resistance of 3D-printed elastoplastic structures with respect to their topology and orientation of deposited layers. Int J Mech Sci 220:107147

    Article  Google Scholar 

  165. Noii N, Jahangiry HA, Waisman H (2023) Level-set topology optimization for ductile and brittle fracture resistance using the phase-field method. Comput Methods Appl Mech Eng 409:115963

    Article  MathSciNet  Google Scholar 

  166. Li P, Wu Y, Yvonnet J (2021) A SIMP-phase field topology optimization framework to maximize quasi-brittle fracture resistance of 2D and 3D composites. Theoret Appl Fract Mech 114:102919

    Article  Google Scholar 

  167. Wu Y, Yvonnet J, Li P, He ZC (2022) Topology optimization for enhanced dynamic fracture resistance of structures. Comput Methods Appl Mech Eng 394:114846

    Article  MathSciNet  Google Scholar 

  168. Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96(1):43–62

    Article  MathSciNet  Google Scholar 

  169. Nguyen TT, Yvonnet J, Zhu QZ, Bornert M, Chateau C (2016) A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput Methods Appl Mech Eng 312:567–595

    Article  MathSciNet  Google Scholar 

  170. Wu C, Fang J, Zhou S, Zhang Z, Sun G, Steven GP, Li Q (2020) Level-set topology optimization for maximizing fracture resistance of brittle materials using phase-field fracture model. Int J Numer Methods Eng 121(13):2929–2945

    Article  MathSciNet  Google Scholar 

  171. Da D, Yvonnet J (2020) Topology optimization for maximizing the fracture resistance of periodic quasi-brittle composites structures. Materials 13(15):3279

    Article  Google Scholar 

  172. Da D (2019) Topology optimization design of heterogeneous materials and structures. Wiley, New York

    Book  Google Scholar 

  173. Da D, Qian X (2020) Fracture resistance design through biomimicry and topology optimization. Extreme Mech Lett 40:100890

    Article  Google Scholar 

  174. Liu F, Li T, Jia Z, Wang L (2020) Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites. Extreme Mech Lett 35:100621

    Article  Google Scholar 

  175. Da D (2022) Model reduction on 3D fracture resistance design. J Comput Phys 463:111274

    Article  MathSciNet  Google Scholar 

  176. Da D, Shu X (To be submitted) Enhancing fracture resistance in architected bi-material structures: design optimization, experimental validation, and mechanical analysis

  177. Singh S, Pflug L, Stingl M (2021) Material optimization to enhance delamination resistance of composite structures using viscous regularization. Comput Methods Appl Mech Eng 382:113881

    Article  MathSciNet  Google Scholar 

  178. Singh S, Pflug L, Mergheim J, Stingl M (2023) Robust design optimization for enhancing delamination resistance of composites. Int J Numer Methods Eng 124(6):1381–1404

    Article  MathSciNet  Google Scholar 

  179. Singh S, Pflug L, Mergheim J, Stingl M (2023) On optimization of heterogeneous materials for enhanced resistance to bulk fracture. Forces Mech 2:100200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Yvonnet or Daicong Da.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvonnet, J., Da, D. Topology Optimization to Fracture Resistance: A Review and Recent Developments. Arch Computat Methods Eng 31, 2295–2315 (2024). https://doi.org/10.1007/s11831-023-10044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10044-9

Navigation