Skip to main content
Log in

Evolutionary topology optimization of continuum structures with smooth boundary representation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper develops an extended bi-directional evolutionary structural optimization (BESO) method for topology optimization of continuum structures with smoothed boundary representation. In contrast to conventional zigzag BESO designs and removal/addition of elements, the newly proposed evolutionary topology optimization (ETO) method, determines implicitly the smooth structural topology by a level-set function (LSF) constructed by nodal sensitivity numbers. The projection relationship between the design model and the finite element analysis (FEA) model is established. The analysis of the design model is replaced by the FEA model with various elemental volume fractions, which are determined by the auxiliary LSF. The introduction of sensitivity LSF results in intermediate volume elements along the solid-void interface of the FEA model, thus contributing to the better convergence of the optimized topology for the design model. The effectiveness and robustness of the proposed method are verified by a series of 2D and 3D topology optimization design problems including compliance minimization and natural frequency maximization. It has been shown that the developed ETO method is capable of generating a clear and smooth boundary representation; meanwhile the resultant designs are less dependent on the initial guess design and the finite element mesh resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16

    Article  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM - Control Optim and Cal of Var 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Da DC, Cui XY, Long K, Li GY (2017) Concurrent topological design of composite structures and the underlying multi-phase materials. Comput Struct 179:1–14

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multi-disciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Garcia MJ, Steven GP (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16(2):145–164

    Article  MATH  Google Scholar 

  • García MJ, Ruíz OE, Steven GP (2001) Engineering design using evolutionary structural optimisation based on iso-stress-driven smooth geometry removal. NAFEMS world congress

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  • Huang X, Xie YM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068

    Article  Google Scholar 

  • Huang X, Xie YM (2010) Topology optimization of continuum structures: methods and applications. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Huang X, Zuo Z, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5):357–364

    Article  Google Scholar 

  • Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870

    Article  Google Scholar 

  • Huang X, Zhou S, Sun G, Li G, Xie YM (2015) Topology optimization for microstructures of viscoelastic composite materials. Comput Methods Appl Mech Eng 283:503–516

    Article  Google Scholar 

  • Jia HP, Beom HG, Wang YX, Lin S, Liu B (2011) Evolutionary level set method for structural topology optimization. Comput Struct 89:445–454

    Article  Google Scholar 

  • Kim H, Garcia MJ, Querin OM, Steven GP, Xie YM (2000) Introduction of fixed grid in evolutionary structural optimization. Eng Comput 17:427–439

    Article  MATH  Google Scholar 

  • Lee S, Kawak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40:271–285

    Article  MathSciNet  Google Scholar 

  • Liu Y, Jin F, Li Q, Zhou S (2008) A fixed-grid bidirectional evolutionary structural optimization method and its applications in tunneling engineering. Inter J Num Meth Eng 73:1788–1710

    Article  MATH  Google Scholar 

  • Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892

    Article  MathSciNet  MATH  Google Scholar 

  • Luo J, Luo Z, Chen L, Tong L, Wang MY (2008) A semi-implicit level set method for structural shape and topology optimization. J Comp Phys 227:5561–5581

    Article  MathSciNet  MATH  Google Scholar 

  • Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Multidiscip Optim 5:64–69

    Article  Google Scholar 

  • Myśliński A (2008) Level set method for optimization of contact problems. Eng Anal Bound Elem 32(11):986–994

    Article  MATH  Google Scholar 

  • Park KS, Youn SK (2008) Topology optimization of shell structures using adaptive inner-front (AIF) level set method. Struct Multidisc Optim 36(1):43–58

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optimiz 20:2–11

    Article  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1999) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches — a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498

    Article  MATH  Google Scholar 

  • Tovar A, Niebur GL, Sen M, Renaud J (2004) Bone structure adaptation as a cellular automaton optimization process. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2004–17862

  • Van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Vicente WM, Picelli R, Pavanello R, Xie YM (2015) Topology optimization of frequency responses of fluid-structure interaction systems. Finite Elem Anal Des 98:1–13

    Article  Google Scholar 

  • Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang SY, Lim KM, Khoo BC, Wang MY (2007) An extended level set method for shape and topology optimization. J Comp Phys 221:395–421

    Article  MathSciNet  MATH  Google Scholar 

  • Xia L, Breitkopf P (2014a) Concurrent topology optimization design of material and structure within fe2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542

    Article  Google Scholar 

  • Xia L, Breitkopf P (2014b) A reduced multiscale model for nonlinear structural topology optimization. Comput Methods Appl Mech Eng 280:117–134

    Article  MathSciNet  Google Scholar 

  • Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167

    Article  MathSciNet  Google Scholar 

  • Xia L, Xia Q, Huang X, Xie YM (2016) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Meth Eng. https://doi.org/10.1007/s11831-016-9203-2

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer-Verlag, London

    Book  MATH  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The coc algorithm, part ii: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Program of National Natural Science of China (61232014) and Australian Research Council (FT130101094). The first author is partially supported by the scholarship (201606130105) provided by China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyao Li or Xiaodong Huang.

Appendix

Appendix

This appendix contains an ETO Matlab code for benchmark designs of structures from full material of the design domain. The code is developed on top of the 88-line code (Andreassen et al. 2011) with the implementation of the ETO method. The design domain is assumed rectangular and discretized into square plane stress elements. The main program is called form the Matlab prompt by the commands

$$ \mathrm{eto}\left(\mathrm{nelx},\mathrm{nely},\mathrm{volfrac},\mathrm{er},\mathrm{rmin},\mathrm{ctp}\right) $$

where nelx and nely denote the total number of elements in the horizontal and vertical directions respectively, volfrac is the prescribed volume fraction, er is the evolutionary rate, rmin is the filter radius, and ctp specifies the case type of benchmark design. The ctp takes values 1, 2, and 3 denoting three benchmark design cases of stiffness maximization design subject to volume fraction constraint: half-MBB beam design, clamped cantilever design, and roller-supported half-wheel design.

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, D., Xia, L., Li, G. et al. Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct Multidisc Optim 57, 2143–2159 (2018). https://doi.org/10.1007/s00158-017-1846-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1846-6

Keywords

Navigation