Skip to main content
Log in

Topology optimization of fail-safe structures using a simplified local damage model

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization of mechanical structures often leads to efficient designs which resemble statically determinate structures. These economical structures are especially vulnerable to local loss of stiffness due to material failure. This paper therefore addresses local failure of continuum structures in topology optimization in order to design fail-safe structures which remain operable in a damaged state.

A simplified model for local failure in continuum structures is adopted in the robust approach. The complex phenomenon of local failure is modeled by removal of material stiffness in patches with a fixed shape. The damage scenarios are taken into account by means of a minimax formulation of the optimization problem which minimizes the worst case performance.

The detrimental influence of local failure on the nominal design is demonstrated in two representative examples: a cantilever beam optimized for minimum compliance and a compliant mechanism. The robust approach is applied successfully in the design of fail-safe alternatives for the structures in these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achtziger W (1999) Optimal topology design of discrete structures resisting degradation effects. Struct Multidiscip Optim 17:74–78

    Article  Google Scholar 

  • Akgün M, Garcelon J, Haftka R (2001) Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Numer Methods Eng 50(7):1587–1606

    Article  MATH  Google Scholar 

  • Amir O, Sigmund O (2011) On reducing computational effort in topology optimization: how far can we go? Struct Multidiscip Optim 44:25–29

    Article  MATH  Google Scholar 

  • Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim 42:55–72

    Article  MATH  Google Scholar 

  • Amir O, Sigmund O, Lazarov BS, Schevenels M (2012) Efficient reanalysis techniques for robust topology optimization. Comput Methods Appl Mech Eng 245–246(0):217–231

    Article  MathSciNet  Google Scholar 

  • Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimisation considering stress response. Struct Multidiscip Optim 45:801–814

    Article  MATH  Google Scholar 

  • Arora J, Govil A, Haskell D (1980) Optimal design of large structures for damage tolerance. AIAA Journal 18:563–570

    Article  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton Series in Applied Mathematics, Princeton University, Princeton

    Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe M, Díaz A (1998) A method for treating damage related criteria in optimal topology design of continuum structures. Struct Multidiscip Optim 16:108–115

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2004) Topology optimization: theory, Methods and Applications, 2nd. Springer, Berlin

    Google Scholar 

  • Beyer H, Sendhoff B (2007) Robust optimization–A comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Diehl M, Bock H, Kostina E (2006) An approximation technique for robust nonlinear optimization. Math Program 107(1):213–230

    Article  MATH  MathSciNet  Google Scholar 

  • Feng Y (1988) The theory of structural redundancy and its effect on structural design. Comput Struct 28(1):15–24

    Article  Google Scholar 

  • Feng Y, Moses F (1986) Optimum design, redundancy and reliability of structural systems. Comput Struct 24(2):239–251

    Article  Google Scholar 

  • Frangopol D, Curley J (1987) Effects of damage and redundancy on structural reliability. J Struct Eng 113(7):1533–1549

    Article  Google Scholar 

  • Guest J (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37:463–473

    Article  MATH  MathSciNet  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Ben-Haim Y (2011) Redundancy and robustness, or when is redundancy redundant? J Struct Eng 137(9):935–945

    Article  Google Scholar 

  • Kim T, Kim J, Jeong J, Kim Y (2004) Filtering technique to control member size in topology design optimization. J MechSci Technol 18:253–261

    Google Scholar 

  • Kreisselmeier G, Steinhauser R (1983) Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int J Control 37(2):251–284

    Article  MATH  Google Scholar 

  • Lazarov B, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int Journal Numer Methods Eng 90(11):1321–1336

    Article  MATH  Google Scholar 

  • Ma D, Braatz R (2001) Worst-case analysis of finite-time control policies. Control Syst Technol IEEE Trans on 9(5):766–774

    Article  Google Scholar 

  • Marhadi K, Venkataraman S (2009) Surrogate measures to optimize structures for robust and predictable progressive failure. Struct Multidiscip Optim 39:245–261

    Article  Google Scholar 

  • Marhadi K, Venkataraman S, Wong S (2011) Load redistribution mechanism in damage tolerant and redundant truss structure. Struct Multidiscip Optim 44:213–233

    Article  Google Scholar 

  • Martins J, Poon N (2005) On structural optimization using constraint aggregation In: 6th World Congress on Structural and Multidisciplinary Optimization. Rio de Janeiro, Brazil

  • Poulsen T (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760

    Article  MATH  MathSciNet  Google Scholar 

  • Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  MATH  MathSciNet  Google Scholar 

  • Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(49-52):3613–3627

    Article  MATH  Google Scholar 

  • Sebastian W (2004) Collapse considerations and electrical analogies for statically indeterminate structures. J Struct Eng 130(10):1445–1453

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sørensen J, Rizzuto E, Narasimhan H, Faber M (2012) Robustness: theoretical framework. Struct Eng Int 22(1):66–72

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes – A new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Tempo R, Calafiore G, Dabbene F (2013) Randomized Algorithms for Analysis and Control of Uncertain Systems Communications and Control Engineering, 2nd. Springer-Verlag

  • Vrouwenvelder T, Leira B, Sykora M (2012) Modelling of hazards. Struct Eng Int 22(1):73–78

    Article  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  MATH  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: Topological, geometrical and generalized shape optimizations. Comput Methods Appl Mech Eng 89(1-3):309–336

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NextTop project sponsored by the Villum Foundation and the KU Leuven - BOF PFV/10/002 OPTEC - Optimization in Engineering Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miche Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, M., Lombaert, G., Schevenels, M. et al. Topology optimization of fail-safe structures using a simplified local damage model. Struct Multidisc Optim 49, 657–666 (2014). https://doi.org/10.1007/s00158-013-1001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1001-y

Keywords

Navigation