Skip to main content
Log in

Second-Phase Precipitates and Their Influence on Mechanical and Work Hardening Behavior of Mg-Al-Sn Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mg-5Al-5Sn (AT55) alloy was subjected to hot extrusion, followed by aging treatments at 150 °C. Microstructural study confirms the grain refinement by extrusion, whereas aging results in the nucleation and growth of secondary phase (Mg17Al12). Micro-hardness of hot extruded specimen ranges from 85 ± 4 to 62 ± 3 Hv after solutionizing and substantially increases to 114 ± 2 Hv after 256 h of aging. Both yield and ultimate tensile strength have improved after aging, by 9 and 14%, respectively. The extruded alloy shows the yield plateau, while in other conditions (peak-aged and over-aged), the yield plateaus are almost negligible. The high ductility of the solutionized is related to their high work hardening ability, which increases initially and subsequently decreases during peak-aged and over-aged conditions. The solutionized alloy exhibits highest work-hardening capacity (1.01) and strain hardening exponent (0.452). Numerous uniformly distributed, lead to detrimental for work hardening rate and hence lower ductility under peak-aged and over-aged conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. B.S. Pugazhendhi, A. Kar, K. Sinnaeruvadi and S. Suwas, Effect of Aluminium on Microstructure, Mechanical Property and Texture Evolution of Dual Phase Mg-8Li Alloy in Different Processing Conditions, Arch. Civ. Mech. Eng., 2018, 18, p 1332–1344. https://doi.org/10.1016/j.acme.2018.04.001

    Article  Google Scholar 

  2. N. Bian, F. Li, Y. Wang and C. Li, Strengthening Mechanism of Room Temperature Mechanical Properties for AZ31 Magnesium Alloy by Continuous Variable Cross section Direct Extrusion, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06111-6

    Article  Google Scholar 

  3. N. Sriraman and S. Kumaran, Influence of Thermomechanical Processing on Microstructure, Mechanical and Strain Hardening Properties of Single-Phase Mg-4Li-0.5 Ca Alloy for Structural Application, J. Magnes. Alloy, 2020, 8, p 1262–1268. https://doi.org/10.1016/j.jma.2020.08.013

    Article  CAS  Google Scholar 

  4. S. Tekumalla and M. Gupta, Processing, Properties and Potential Applications of Magnesium Alloy-Based Nanocomposites: A Review, Nanocompos. VI Nanosci. Nanotechnol. Adv. Compos., 2019 https://doi.org/10.1007/978-3-030-35790-0_1

    Article  Google Scholar 

  5. S. You, Y. Huang, K.U. Kainer and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magnes. Alloy, 2017, 5, p 239–253. https://doi.org/10.1016/j.jma.2017.09.001

    Article  CAS  Google Scholar 

  6. H. Garbacz, K. Topolski and M. Motyka, Chapter 3- hydrostatic extrusion, Micro and Nano Technologies. H. Garbacz, I.P. Semenova, S. Zherebtsov, M.B.T.N.T. Motyka Ed., Elsevier, Hoboken, 2019, p 37–53

    Google Scholar 

  7. A. Ercetin, A Novel Mg-Sn-Zn-Al-Mn Magnesium Alloy with Superior Corrosion Properties, Metall. Res. Technol., 2021, 118, p 504. https://doi.org/10.1051/metal/2021064

    Article  CAS  Google Scholar 

  8. A. Ercetin, Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05814-0

    Article  Google Scholar 

  9. Y. Wang et al., Cold Arc Cladding of Aluminum Coatings on AZ61 Magnesium Alloy: A Comparative Study, Surf. Coat. Technol., 2019, 375, p 442–457. https://doi.org/10.1016/j.surfcoat.2019.07.043

    Article  CAS  Google Scholar 

  10. E. Koç, A. Incesu and A.N. Saud, Comparative Study on Dry and Bio-Corrosive Wear Behavior of Mg-xAl-3Zn Alloys (x= 0.5-1-2-3 wt.%), J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06144-x

    Article  Google Scholar 

  11. I.H. Kara and A. Incesu, Microstructural, Mechanical, and Tribological Properties of Mg-3Al-1Sn-1Nd-Mn Alloy, J. Mater. Eng. Perform., 2021, 30, p 1674–1682. https://doi.org/10.1007/s11665-021-05463-3

    Article  CAS  Google Scholar 

  12. U.K. Singh and A.K. Dubey, Study of Weld Characteristics in Friction Stir Welding of Dissimilar Mg-Al-Zn Magnesium Alloys under Varying Welding Conditions, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05893-z

    Article  Google Scholar 

  13. G. Li et al., Microstructure, Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite Interlayer, J. Mater. Process. Technol., 2021, 288, p 116874. https://doi.org/10.1016/j.jmatprotec.2020.116874

    Article  CAS  Google Scholar 

  14. G. Li et al., New Insights into the Characterization and Formation of the Interface of A356/AZ91D Bimetallic Composites Fabricated by Compound Casting, Metall. Mater. Trans. A, 2019, 50, p 1076–1090. https://doi.org/10.1007/s11661-018-5022-4

    Article  CAS  Google Scholar 

  15. Z. Zhang et al., Effect of La on Microstructure, Mechanical Properties and Fracture Behavior of Al/Mg Bimetallic Interface Manufactured by Compound Casting, J. Mater. Sci. Technol., 2022, 105, p 214–225. https://doi.org/10.1016/j.jmst.2021.08.011

    Article  Google Scholar 

  16. F. Liu, R. Xin, M.X. Zhang, M.T. Pérez-Prado and Q. Liu, Evaluating the Orientation Relationship of Prismatic Precipitates Generated by Detwinning in Mg Alloys, Acta Mater., 2020, 195, p 263–273. https://doi.org/10.1016/j.actamat.2020.05.031

    Article  CAS  Google Scholar 

  17. H. Watanabe, Effect of Second-Phase Precipitates on Local Elongation in Extruded Magnesium Alloys, J. Mater. Eng. Perform., 2013, 22, p 3450–3454. https://doi.org/10.1007/s11665-013-0651-7

    Article  CAS  Google Scholar 

  18. C. Muthuraja et al., Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Mg-rich Region of Mg-Sn-Y Alloys, J. Alloys Compd., 2017, 695, p 3559–3572. https://doi.org/10.1016/j.jallcom.2016.11.413

    Article  CAS  Google Scholar 

  19. Ö. Özgün, K. Aslantaş and A. Erçetin, Powder Metallurgy Mg-Sn Alloys: Production and Characterization, Sci. Iran., 2020, 27, p 1255–1265. https://doi.org/10.24200/sci.2019.50212.1578

    Article  Google Scholar 

  20. M. Zhang, W. Zhang, G. Zhu and K. Yu, Crystallography of Mg2Sn Precipitates in Mg-Sn-Mn-Si Alloy, Trans. Nonferrous Met. Soc. China, 2007, 17, p 1428–1432. https://doi.org/10.1016/S1003-6326(07)60289-1

    Article  Google Scholar 

  21. F. Akkoyun and A. Ercetin, Automated Grain Counting for the Microstructure of Mg Alloys Using an Image Processing Method, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06436-2

    Article  Google Scholar 

  22. A. Ercetin et al., Image Processing of Mg-Al-Sn Alloy Microstructures for Determining Phase Ratios and Grain Size and Correction with Manual Measurement, Materials (Basel), 2021, 14, p 5095. https://doi.org/10.3390/ma14175095

    Article  CAS  Google Scholar 

  23. Z. Zribi, H.H. Ktari, F. Herbst, V. Optasanu and N. Njah, EBSD, XRD and SRS Characterization of a Casting Al-7wt% Si Alloy Processed by Equal Channel Angular Extrusion: Dislocation Density Evaluation, Mater. Charact., 2019, 153, p 190–198. https://doi.org/10.1016/j.matchar.2019.04.044

    Article  CAS  Google Scholar 

  24. R. Kishor, L. Sahu, K. Dutta and A.K. Mondal, Assessment of Dislocation Density in Asymmetrically Cyclic Loaded Non-Conventional Stainless Steel Using X-ray Diffraction Profile Analysis, Mater. Sci. Eng. A, 2014, 5(98), p 299–303. https://doi.org/10.1016/j.msea.2014.01.043

    Article  CAS  Google Scholar 

  25. D. Zhang et al., Excellent Ductility and Strong Work Hardening Effect of As-Cast Mg-Zn-Zr-Yb Alloy at Room Temperature, J. Alloys Compd., 2017, 728, p 404–412. https://doi.org/10.1016/j.jallcom.2017.09.016

    Article  CAS  Google Scholar 

  26. H. Liao et al., Effects of Mn Addition on the Microstructures, Mechanical Properties and Work-Hardening of Mg-1Sn Alloy, Mater. Sci. Eng. A, 2019, 754, p 778–785. https://doi.org/10.1016/j.msea.2019.02.021

    Article  CAS  Google Scholar 

  27. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo and K. Hono, Compositional Optimization of Mg-Sn-Al Alloys for Higher Age Hardening Response, Mater. Sci. Eng. A, 2013, 566, p 22–29. https://doi.org/10.1016/j.msea.2012.12.041

    Article  CAS  Google Scholar 

  28. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo and K. Hono, Significant Enhancement of the Age-Hardening Response in Mg-10Sn-3Al-1Zn Alloy by Na Microalloying, Scr. Mater., 2013, 68, p 797–800. https://doi.org/10.1016/j.scriptamat.2013.01.032

    Article  CAS  Google Scholar 

  29. A. Ercetin, Ö. Özgün and K. Aslantas, Investigation of Mechanical Properties of Mg5Sn-xZn Alloys Produced Through New Method in Powder Metallurgy, J. Test. Eval., 2021 https://doi.org/10.1520/JTE20200020

    Article  Google Scholar 

  30. Z.-J. Chen, Y.C. Lin, D.-G. He, Y.-M. Lou and M.-S. Chen, A Unified Dislocation Density-Based Model for an Aged Polycrystalline Ni-Based Superalloy Considering the Coupled Effects of Complicate Deformation Mechanisms and Initial δ Phase, Mater. Sci. Eng. A, 2021, 827, p 142062. https://doi.org/10.1016/j.msea.2021.142062

    Article  CAS  Google Scholar 

  31. U. Masood Chaudry, S. Tekumalla, M. Gupta, T.-S. Jun and K. Hamad, Designing Highly Ductile Magnesium Alloys: Current Status and Future Challenges, Crit. Rev. Solid State Mater. Sci., 2021 https://doi.org/10.1080/10408436.2021.1947185

    Article  Google Scholar 

  32. J. Luo, H. Luo, S. Li, R. Wang and Y. Ma, Effect of Pre-Aging Treatment on Second Nucleating of GPII Zones and Precipitation Kinetics in an Ultrafine Grained 7075 Aluminum Alloy, Mater. Des., 2020, 187, p 108402. https://doi.org/10.1016/j.matdes.2019.108402

    Article  CAS  Google Scholar 

  33. F. Cao, C. Sun, H. Shang, C. Xiang and R. Liu, Microstructure Evolution and Mechanical Properties in an Ultralight Mg-2.76 Li–3Al-2.6 Zn-0.39 Y Alloy, Mater. Sci. Eng. A, 2021, 822, p 141680. https://doi.org/10.1016/j.msea.2021.141680

    Article  CAS  Google Scholar 

  34. C. Wang, Y. Xu and E. Han, Portevin-Le Chatelier Effect of LA41 Magnesium Alloys, Front. Mater. Sci. China, 2007, 1, p 105–108. https://doi.org/10.1007/s11706-007-0019-8

    Article  Google Scholar 

  35. S.K. Woo, R. Pei, T. Al-Samman, D. Letzig and S. Yi, Plastic Instability and Texture Modification in Extruded Mg-Mn-Nd Alloy, J. Magnes. Alloy, 2021 https://doi.org/10.1016/j.jma.2021.07.003

    Article  Google Scholar 

  36. H. Dong, F. Pan, B. Jiang and Y. Zeng, Evolution of Microstructure and Mechanical Properties of a Duplex Mg–Li Alloy Under Extrusion with an Increasing Ratio, Mater. Des., 2014, 57, p 121–127. https://doi.org/10.1016/j.matdes.2013.12.055

    Article  CAS  Google Scholar 

  37. H. Yamada, T. Kami and N. Ogasawara, Effects of Testing Temperature on the Serration Behavior of an Al-Zn-Mg-Cu Alloy with Natural and Artificial Aging in Sharp Indentation, Metals (Basel), 2020, 10, p 597. https://doi.org/10.3390/met10050597

    Article  CAS  Google Scholar 

  38. A.D. Rollett and U.F. Kocks, A Review of the Stages of Work Hardening, Solid State Phenom., 1993, 35, p 1–18. https://doi.org/10.4028/www.scientific.net/SSP.35-36.1

    Article  Google Scholar 

  39. A. Kula, X. Jia, R.K. Mishra and M. Niewczas, Flow Stress and Work Hardening of Mg-Y Alloys, Int. J. Plast., 2017, 92, p 96–121. https://doi.org/10.1016/j.ijplas.2017.01.012

    Article  CAS  Google Scholar 

  40. J. Song, J. She, D. Chen and F. Pan, Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloy., 2020, 8, p 1–41. https://doi.org/10.1016/j.jma.2020.02.003

    Article  CAS  Google Scholar 

  41. B.H. Lee, S.H. Kim, J.H. Park, H.W. Kim and J.C. Lee, Role of Mg in Simultaneously Improving the Strength and Ductility of Al-Mg Alloys, Mater. Sci. Eng. A, 2016, 657, p 115–122. https://doi.org/10.1016/j.msea.2016.01.089

    Article  CAS  Google Scholar 

  42. X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, Influence of Aluminum Content on the Texture and Sheet Formability of AM Series Magnesium Alloys, Mater. Sci. Eng. A, 2015, 633, p 144–153. https://doi.org/10.1016/j.msea.2015.03.018

    Article  CAS  Google Scholar 

  43. D. Tie et al., The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy, Metals (Basel), 2020, 10, p 1256. https://doi.org/10.3390/met10091256

    Article  CAS  Google Scholar 

  44. J. Yu et al., Dynamic Tensile Properties and Microstructural Evolution of Extruded EW75 Magnesium Alloy at High Strain Rates, J. Magnes. Alloy, 2020, 8, p 849–859. https://doi.org/10.1016/j.jma.2020.02.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, P., Venkatesh, G. & Kumaran, S. Second-Phase Precipitates and Their Influence on Mechanical and Work Hardening Behavior of Mg-Al-Sn Alloy. J. of Materi Eng and Perform 31, 5288–5297 (2022). https://doi.org/10.1007/s11665-022-06631-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06631-9

Keywords

Navigation