Skip to main content
Log in

Strengthening Mechanism of Room Temperature Mechanical Properties for AZ31 Magnesium Alloy by Continuous Variable Cross section Direct Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AZ31 magnesium alloy has poor plastic deformation ability at room temperature due to its hexagonal close-packed (HCP) structure. For traditional plastic forming processes, such as extrusion processes, they can improve the mechanical properties of AZ31 magnesium alloy within a certain range at room temperature. But the coordinated deformation of twin mechanism cannot be neglected during the plastic deformation process. The mechanical properties of AZ31 magnesium alloy exhibit tension–compression yield asymmetry (TCYA). These characteristics of AZ31 magnesium alloy have caused restrictions. As a short forming/preparing integrated process, CVCDE can increase the yield strength (YS) of AZ31 magnesium alloy while effectively improving the TCYA of AZ31 magnesium alloy. In this study, the uniaxial compression test is employed and the quantitative evaluation of the AZ31 magnesium alloy TCYA is carried out by means of the SDE coefficient. With the aid of scanning electron microscopes (SEM) and electron backscattered diffraction (EBSD), the test results indicate that the fracture morphology has changed significantly with the increase in CVCDE interim. The distribution of tear ridges in the fracture area tends to be uniform and the number of dimples increases significantly. The dimples also present a trend of deepening. From the twin distribution, the proportion of {10-12} tensile twins (TTWs) decreased after the AZ31 magnesium alloy processed by CVCDE. This is conducive to the YS in the compression process and the improvement of the TCYA can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Suh, S. Shim, S. Shin, and N. Kim, Current Issues in Magnesium Sheet Alloys: Where Do We Go from Here?, Scr. Mater., 2014, 16, p 84–85

    Google Scholar 

  2. Z. Zeng, N. Stanford, J. Davies, F. Nie, and N. Birbilis, Magnesium Extrusion Alloys: A Review of Developments and Prospects, Int. Mater. Rev., 2019, 64, p 1–36

    Article  Google Scholar 

  3. L. Xin, J. Liu, R. Xu, B. Li, and Q. Liu, Changes in Texture and Microstructure of Friction Stir Welded Mg Alloy during Post-rolling and Their Effects on Mechanical Properties, Mater. Sci. Eng. A Struct., 2013, 582, p 178–187

    Article  CAS  Google Scholar 

  4. L. Xin, F. Guo, R. Xu, D. Liu, X. Huang, and Q. Liu, Characteristics of Long 10-12 Twin Bands in Sheet Rolling of a Magnesium Alloy, Scr. Mater., 2014, 74, p 96–99

    Article  CAS  Google Scholar 

  5. H. Yoo, Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall. Mater. Trans. A, 1981, 12A, p 409–418

    Article  Google Scholar 

  6. K. Prasad and P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng. A Struct., 2008, 487, p 316–327

    Article  Google Scholar 

  7. J. Bohlen, B. Yi, D. Letzig, and U. Kainer, Effect of Rare Earth Elements on the Micro-structure and Texture Development in Magnesium-Manganese Alloys during Extrusion, Mater. Sci. Eng. A Struct., 2010, 527(26), p 7092–7098

    Article  Google Scholar 

  8. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and J. Beyerlein, Strength and Ductility with {1011}-{1012} Double Twinning in a Magnesium Alloy, Nat. Commun., 2016, 7, p 1–7

    Google Scholar 

  9. F. Chai, D. Zhang, W. Zhang, and Y. Li, Microstructure Evolution during High Strain Rate Tensile Deformation of a Fine-Grained AZ91 Magnesium Alloy, Mater. Sci. Eng. A Struct., 2014, 590, p 80–87

    Article  CAS  Google Scholar 

  10. J. Ai, G. Fang, J. Zhou, A. Leeflang, and J. Duszczyk, Effect of Twinning on the Deformation Behavior of an Extruded Mg-Zn-Zr Alloy during Hot Compression Testing, Mater. Sci. Eng. A Struct., 2012, 556, p 373–381

    Article  CAS  Google Scholar 

  11. Z. Wu, G. Yan, H. Chen, Q. Zhu, B. Su, and L. Zeng, Hot Deformation Behavior and Microstructure Evolution of ZK21 Magnesium Alloy, Mater. Sci. Eng. A Struct., 2010, 527(16–17), p 3670–3675

    Article  Google Scholar 

  12. X. Liu, W. Zhu, C. Xie, J. Zhang, P. Tang, and Q. Chen, Twinning, Dynamic Recrystallization, and Crack in AZ31 Magnesium Alloy during High Strain Rate Plane Strain Compression Across a Wide Temperature, Mater. Sci. Eng. A Struct., 2018, 733, p 98–107

    Article  CAS  Google Scholar 

  13. C. Dharmendra, P. Rao, K. Jain, and K. Prasad, Role of Loading Direction on Compressive Deformation Behavior of Extruded ZK60 Alloy Plate in a Wide Range of Temperature, J. Alloys Compd., 2018, 744, p 289–300

    Article  CAS  Google Scholar 

  14. W. Wong, A. Hadadzadeh, and A. Wells, High Temperature Deformation Behavior of Extruded AZ31B Magnesium Alloy, J. Mater. Process. Technol., 2018, 251, p 360–368

    Article  CAS  Google Scholar 

  15. X. Liu, J. Jonas, X. Li, and W. Zhu, Flow Softening, Twinning and Dynamic Recrystallization in AZ31 Magnesium, Mater. Sci. Eng. A Struct., 2013, 583, p 242–253

    Article  CAS  Google Scholar 

  16. X. Wang, G. Fang, A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive Behavior and Microstructure Evolution of the As-Extruded AE21 Magnesium Alloy during Hot Compression Testing, J. Alloys Compd., 2015, 622, p 121–129

    Article  CAS  Google Scholar 

  17. K.N. Zhao, D.X. Xu, X. Song, Y.Z. Ma, H.X. Li, J.S. Zhang, and D.L. Chen, Reducing Yield Asymmetry Between Tension and Compression by Fabricating ZK60/WE43 Bimetal Composites, Materials, 2020, 13(1), p 249

    Article  CAS  Google Scholar 

  18. B. Lin, D. Wang, M. Peng, and T. Peng, Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-Extruded ZK60 Magnesium Alloy, Mater. Trans., 2008, 49(5), p 1021–1024

    Article  CAS  Google Scholar 

  19. B. Tong, Y. Zheng, S. Kamado, P. Zhang, J. Meng, R. Cheng, and J. Zhang, Reducing the Tension–Compression Yield Asymmetry of Extruded Mg-Zn-Ca Alloy via Equal Channel Angular Pressing, J. Magn. Alloys, 2015, 3, p 302–308

    Article  CAS  Google Scholar 

  20. A. Spitzig and O. Richmond, Effect of Pressure on the Flow Stress of Metals, Acta Metall. Sin., 1984, 32, p 457–463

    Article  CAS  Google Scholar 

  21. X. Li, F. Li, and W. Li, Microstructural Analysis and Texture Evolution of the CVCEDed AZ31 Magnesium Alloy by Hot Rolling, J. Mater. Eng. Perform., 2018, 27, p 4732–4739

    Article  CAS  Google Scholar 

  22. B. Lin, D. Wang, M. Peng, and J. Roven, Microstructure and High Tensile Ductility of ZK60 Magnesium Alloy Processed by Cyclic Extrusion and Compression, J. Alloys Compd., 2009, 476, p 441–445

    Article  CAS  Google Scholar 

  23. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure, Scr. Mater., 2001, 45, p 89–94

    Article  CAS  Google Scholar 

  24. M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, Materials Park, ASM International, 1999, p 17

    Google Scholar 

  25. Z. Valiev, K. Islamgaliev, and V. Alexan, Bulk Nanostructure Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189

    Article  CAS  Google Scholar 

  26. K. Hantzsche, J. Bohlen, J. Wendt, U. Kainer, B. Yi, and D. Letzig, Effect of Rare Earth Additions on Microstructure and Texture Development of Magnesium Alloy Sheets, Scr. Mater., 2010, 63, p 725–730

    Article  CAS  Google Scholar 

  27. D. Guan, M. Rainforth, J. Gao, J. Sharp, B. Wynne, and L. Ma, Individual Effect of Recrystallisation Nucleation Sites on Texture Weakening in a Magnesium Alloy: Part 1—Double Twins, Acta Mater., 2017, 135, p 14–24

    Article  CAS  Google Scholar 

  28. D. Sarker, J. Friedman, and L. Chen, Influence of Pre-strain on De-twinning Activity in an Extruded AM30 Magnesium Alloy, Mater. Sci. Eng. A Struct., 2014, 605, p 73–79

    Article  CAS  Google Scholar 

  29. R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part I: “Tension” Twins, Mater. Sci. Eng. A Struct., 2007, 464(1–2), p 1–7

    Article  Google Scholar 

  30. R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part II: “Contraction” Twins, Mater. Sci. Eng. A Struct., 2007, 464(1–2), p 8–16

    Article  Google Scholar 

  31. A. Sisneros, W. Brown, B. Clausen, C. Donati, S. Kabra, R. Blumenthal, and C. Vogel, Influence of Strain Rate on Mechanical Properties and Deformation Texture of Hot-Pressed and Rolled Beryllium, Mater. Sci. Eng. A Struct., 2010, 527(20), p 5181–5188

    Article  Google Scholar 

  32. T. Prado, A. Valle, and A. Ruano, Effect of Sheet Thickness on the Microstructure Evolution of an Mg Alloy during Large Strain Hot Rolling, Scr. Mater., 2004, 50, p 667–671

    Article  Google Scholar 

  33. Z. Li, J. Wang, Z. Li, M. Liu, and T. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A Struct., 2010, 528(1), p 154–160

    Article  Google Scholar 

  34. Y. Yang, S. Ji, H. Miura, and T. Sakai, Dynamic Recrystallization and Texture Development during Hot Deformation of Magnesium Alloy AZ31, Trans. Nonferr. Met. Soc., 2009, 19(1), p 55–60

    Article  Google Scholar 

  35. B. Yi, J. Davies, G. Brokmeier, E. Bolmaro, U. Kainer, and J. Homyer, Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial Loading, Acta Mater., 2006, 54, p 549–562

    Article  CAS  Google Scholar 

  36. M. Yin, D. Wu, and X. Li, Tensile-Compressive Yield Asymmetry and Microstructure Evolution during Deformation of Coarse-Grained AZ31D Magnesium Alloy, Chin. J. Mater. Res., 2007, 21, p 38–42

    Google Scholar 

  37. R. Barnett, Z. Keshavarz, and G. Beer, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52(17), p 5093–5103

    Article  CAS  Google Scholar 

  38. X. Lou, M. Li, and R. Boger, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast., 2007, 23(1), p 44–86

    Article  CAS  Google Scholar 

  39. Q. Ma, E. Kadiri, and L. Oppedal, Twinning Effects in a Rod-Textured AM30 Magnesium Alloy, Int. J. Plast., 2012, 29, p 60–76

    Article  CAS  Google Scholar 

  40. F. Li, X. Zeng, Q. Chen, and J. Cao, Effect of Local Strains on the Texture and Mechanical Properties of AZ31 Magnesium Alloy Produced by Continuous Variable Cross-section Direct Extrusion (CVCDE), Mater. Des., 2015, 85, p 389–395

    Article  CAS  Google Scholar 

  41. B. Li and Y. Zhang, Twinning with Zero Twinning Shear, Scr. Mater., 2016, 125, p 73–79

    Article  CAS  Google Scholar 

  42. Y. Zhang, B. Li, L. Wu, T. Zhu, Q. Ma, and Q. Liu, Twin Boundaries Showing Very Large Deviations from the Twinning Plane, Scr. Mater., 2012, 67, p 862–865

    Article  CAS  Google Scholar 

  43. C. Cayron and R. Loge, Evidence of New Twinning Modes in Magnesium Questioning the Shear Paradigm, J. Appl. Crystallogr., 2018, 51, p 809–817

    Article  CAS  Google Scholar 

  44. G. Song and T. Gray, Structural Interpretation of the Nucleation and Growth of Deformation Twins in Zr and Ti—II. Tem Study of Twin Morphology and Defect Reactions during Twinning, Acta Metall. Sin., 1995, 43, p 2339–2350

    Article  CAS  Google Scholar 

  45. G. Song and T. Gray, Structural Interpretation of the Nucleation and Growth of Deformation Twins in Zr and Ti—I. Application of the Coincidence Site Lattice (CSL) Theory to Twinning Problems in H.C.P. Structures, Acta Metall. Sin., 1995, 43, p 2325–2337

    Article  CAS  Google Scholar 

  46. Y. Wang, F. Li, W. Li, and B. Fang, Unusual Texture Formation and Mechanical Property in AZ31 Magnesium Alloy Sheets Processed by CVCDE, J. Mater. Process. Technol., 2020, 275, p 116360

    Article  CAS  Google Scholar 

  47. H. Somekawa, Y. Osawa, and T. Mukai, Effect of Solid-Solution Strengthening on Fracture Toughness in Extruded Mg-Zn Alloys, Scr. Mater., 2006, 55, p 593–596

    Article  CAS  Google Scholar 

  48. C. Wonsiewwicz and A. Backofen, Plasticity of Magnesium Crystals, Trans. AIME, 1967, 239, p 1422–1431

    Google Scholar 

  49. F. Li, X. Zeng, and N. Bian, Microstructure of AZ31 Magnesium Alloy Produced by Continuous Variable Cross-section Direct Extrusion (CVCDE), Mater. Lett., 2014, 135, p 79–82

    Article  CAS  Google Scholar 

  50. W. Hutchinson and R. Barnett, Effective Values of Critical Resolved Shear Stress for Slip in Polycrystalline Magnesium and Other HCP Metals, Scr. Mater., 2010, 63(7), p 737–740

    Article  CAS  Google Scholar 

  51. A. Chapuis and H. Driver, Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals, Acta Mater., 2011, 59(5), p 1986–1994

    Article  CAS  Google Scholar 

  52. Y. Liu, F. Li, W. Li, and W. Shi, Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-section Direct Extrusion, J. Mater. Eng. Perform., 2018, 27, p 1334–1342

    Article  CAS  Google Scholar 

  53. C. Xin, J. Zhou, C. Lv, and Q. Liu, The Influence of a Secondary Twin on the Detwinning Deformation of a Primary Twin in Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A Struct., 2014, 606(6), p 81–91

    Article  CAS  Google Scholar 

  54. C. Lou, Q. Sun, S. Yang, Y. Ren, Y. Gao, and Y. Zhang, Microstructure and Deformation Mechanism of AZ31 Magnesium Alloy under Dynamic Strain Rate, J. Mater. Eng. Perform., 2018, 27, p 6189–6195

    Article  CAS  Google Scholar 

  55. A. Meyers, O. Vohringer, and A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039

    Article  CAS  Google Scholar 

  56. R. Barnett, Z. Keshavarz, G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103

    Article  CAS  Google Scholar 

  57. R. Barnett, A Rationale for the Strong Dependence of Mechanical Twinning on Grain Size, Scr. Mater., 2008, 59, p 696–698

    Article  CAS  Google Scholar 

  58. Q. Cheng, H. Chen, and J. Xia, Effect of Crystal Orientation on the Ductility in AZ31 Mg Alloy Sheets Produced by Equal Channel Angular Rolling, J. Mater. Sci., 2007, 42, p 3552–3556

    Article  CAS  Google Scholar 

  59. D. Wang, J. Chen, B. Lin, J. Zhang, and Q. Zhai, Microstructure and Properties of Magnesium Alloy Processed by a New Severe Plastic Deformation method, Mater. Lett., 2007, 61, p 4599–4602

    Article  CAS  Google Scholar 

  60. S. Roodposhti, A. Sarkar, and L. Murty, Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy, Magn. Technol., 2015, 12, p 29–34

    Google Scholar 

  61. J. Wang, P. Hirth, and N. Tomé, 10-12 Twinning Nucleation Mechanisms in Hexagonal Close-Packed Crystals, Acta Mater., 2009, 57, p 5521–5530

    Article  CAS  Google Scholar 

  62. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, J. McCabe, Y. Jiang, and N. Tomé, Characterizing the Boundary Lateral to the Shear Direction of Deformation Twins in Magnesium, Nat. Commun., 2016, 7, p 11577

    Article  CAS  Google Scholar 

  63. J. Beyerlein, J. McCabeb, and N. Tomé, Effect of Microstructure on the Nucleation of Deformation Twins in Polycrystalline High-Purity Magnesium: A Multi-scale Modeling Study, J. Mech. Phys. Solids, 2011, 59, p 988–1003

    Article  CAS  Google Scholar 

  64. J. Beyerlein, J. Demkowicz, A. Misra, and P. Uberuaga, Defect–Interface Interactions, Prog. Mater. Sci., 2015, 74, p 125–210

    Article  CAS  Google Scholar 

  65. D. Culbertsona, Q. Yu, J. Wang, and Y. Jiang, Pre-compression Effect on Micro-structure Evolution of Extruded Pure Polycrystalline Magnesium during Reversed Tension Load, Mater. Charact., 2017, 134, p 41–48

    Article  Google Scholar 

  66. J. Wang, K. Yadav, P. Hirth, N. Tomé, and J. Beyerlein, Pure-Shuffle Nucleation of Deformation Twins in Hexagonal-Close-Packed Metals, Mater. Res. Lett., 2013, 1(3), p 126–132

    Article  CAS  Google Scholar 

  67. P. Chen, X. Wang, J. Ombogo, and B. Li, Formation of 60°{01-10} Boundaries Between {10-12} Twin Variants in Deformation of a Magnesium Alloy, Mater. Sci. Eng. A Struct., 2019, 739, p 173–185

    Article  CAS  Google Scholar 

  68. P. Chen, B. Li, D. Culbertson, and Y. Jiang, Contribution of Extension Twinning to Plastic Strain at Low Stress Stage Deformation of a Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A Struct., 2018, 709, p 40–45

    Article  CAS  Google Scholar 

  69. J. Mu, J. Jonas, and G. Gottstein, Variant Selection of Primary, Secondary and Tertiary Twins in a Deformed Mg Alloy, Acta Mater., 2012, 60(5), p 2043–2053

    Article  CAS  Google Scholar 

  70. Y. Jin, Y. Liu, Z. Wu, F. Zhong, G. Hou, and H. Zhang, Combination Effects of Yb Addition and Cryogenic Rolling on Microstructure and Mechanical Properties of LA141 Alloy, Mater. Sci. Eng. A Struct., 2020, 788, p 139611

    Article  CAS  Google Scholar 

  71. L. Guo, R. Fu, Y. Pei, Q. Wang, Y. Zhao, Y. Song, and C. Chen, Microstructure, Texture, and Mechanical Properties of Continuously Extruded and Rolled AZ31 Magnesium Alloy Sheets, J. Mater. Eng. Perform., 2019, 28, p 6692–6703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (No. 51975166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, N., Li, F., Wang, Y. et al. Strengthening Mechanism of Room Temperature Mechanical Properties for AZ31 Magnesium Alloy by Continuous Variable Cross section Direct Extrusion. J. of Materi Eng and Perform 30, 9215–9226 (2021). https://doi.org/10.1007/s11665-021-06111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06111-6

Keywords

Navigation