Skip to main content
Log in

Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The production of magnesium alloys by the powder metallurgy (P/M) method is difficult and troublesome. An alternative production method with easy usability is therefore required, and the properties of new Mg alloys should be examined after production. A type of P/M method (the hot press method) can be applied to produce new Mg alloys with superior properties. In this study, the effect of Al addition and the use of the hot press method on the microstructure and mechanical properties of magnesium alloy were investigated. TZA series magnesium alloys (Mg5Sn4Zn-xAl) were developed, and these alloys were produced in this way for the first time. The paraffin coating technique was applied to prevent the risk of ignition or oxidation of the Mg powders during the mixing process. The experimental results showed that new non-porous Mg alloys with a relative density above 99% were successfully produced using the hot press method. Intermetallic phases were homogeneously distributed at the grain boundaries due to the use of the hot press process. The amount of Mg17Al12 phase in the microstructure increased with the addition of more Al, and this improved the mechanical properties. TZA544 magnesium alloy exhibits mechanical properties that are superior to those of many magnesium alloys in current use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Nishikawa and A. Takara, Current Status and Manufacturing Technologies of Magnesium Alloy Parts in Japanese Home Electronics, Mater. Sci. Forum, 2003, 426, p 569–574. https://doi.org/10.4028/www.scientific.net/MSF.426-432.569

    Article  Google Scholar 

  2. Q. Zhu, A. Rassili, SP. Midson, and XG. Hu, The Status of Magnesium Injection Molding in China, Sol. St. Phen., 2019, 285, p 436–440.https://doi.org/10.4028/www.scientific.net/SSP.285.436

    Article  Google Scholar 

  3. U. Koklu and H. Coban, Effect of Dipped Cryogenic Approach on Thrust Force, Temperature, Tool Wear and Chip Formation in Drilling of AZ31 Magnesium Alloy, J. Mater. Res. Technol., 2020, 9, p 2870–2880. https://doi.org/10.1016/j.jmrt.2020.01.038

    Article  CAS  Google Scholar 

  4. J. Wang, S. Gao, P. Song, X. Huang, Z. Shi, and F. Pan, Effects of Phase Composition on the Mechanical Properties and Damping Capacities of As-Extruded Mg-Zn-Y-Zr Alloys, J. Alloys Compd., 2011, 509, p 8567–8572. https://doi.org/10.1016/j.jallcom.2011.06.017

    Article  CAS  Google Scholar 

  5. D.Q. Wan, H.B. Wang, S.T. Ye, Y.L. Hu, and J.J. Hu, High Damping and Good Mechanical Properties Combined in As-Cast Mg-0.6%Zr-Zn Tenary Alloys, Int. J. Cast. Metal. Res., 2019, 32, p 262–265. https://doi.org/10.1080/13640461.2019.1690416

    Article  CAS  Google Scholar 

  6. G. Prakash, N.K. Singh, D. Kumar, and P. Chandel, Dynamic Tensile Behaviour of Magnesium Alloy AZ41 at Different Strain Rates and Temperatures, UPB Sci. Bull. Ser. D, 2020, 82, p 177–186.

    Google Scholar 

  7. S.Y. Betsofen, O.E. Osintsev, I.A. Grushin, A.A. Petrov, and K.A. Speranskii, Influence of Alloying Elements on the Deformation Mechanism and the Texture of Magnesium Alloys, Russ. Metall., 2019, 2019, p 346–360. https://doi.org/10.1134/S0036029519040049

    Article  Google Scholar 

  8. D.F. Zhang, H.J. Hu, F.S. Pan, M.B. Yang, and J.P. Zhang, Numerical and Physical Simulation of New SPD Method Combining Extrusion and Equal Channel Angular Pressing for AZ31 Magnesium Alloy, T. Nonferr. Metal. Soc., 2010, 20, p 478–483. https://doi.org/10.1016/S1003-6326(09)60165-5

    Article  CAS  Google Scholar 

  9. R.Z. Wu, Z.K. Qu, and M.L. Zhang, Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Mg-Li Base Alloys, Rev. Adv. Mater. Sci., 2010, 24, p 35–43.

    CAS  Google Scholar 

  10. Y. Chen, L. Jin, Y. Song, H. Liu, and R. Ye, Effect of Zn on Microstructure and Mechanical Property of Mg-3Sn-1Al Alloys, Mater. Sci. Eng. A, 2014, 612, p 96–101. https://doi.org/10.1016/j.msea.2014.06.022

    Article  CAS  Google Scholar 

  11. E. Willbold, X. Gu, D. Albert, K. Kalla, K. Bobe, M. Brauneis, C. Janning, J. Nellesen, W. Czayka, W. Tillmann, Y. Zheng, and F. Witte, Effect of the Addition of Low Rare Earth Elements (Lanthanum, Neodymium, Cerium) on the Biodegradation and Biocompatibility of Magnesium, Acta Biomater., 2015, 11, p 554–562. https://doi.org/10.1016/j.actbio.2014.09.041

    Article  CAS  Google Scholar 

  12. Y. Huang, H. Dieringa, N. Hort, T.A. Leil, K.U. Kainer, and Y. Liu, Effects of Segregation of Primary Alloying Elements on the Creep Response in Magnesium Alloys, Scripta Mater., 2008, 58, p 894–897. https://doi.org/10.1016/j.scriptamat.2008.01.011

    Article  CAS  Google Scholar 

  13. Y. Turen, H. Zengin, Y. Sun, H. Ahlatci, and M. Unal, Effects of 1wt.% Ti, In, and Sn Additions on the Microstructure, Mechanical and Corrosion Properties of the As-Cast and Hot-Rolled AM60 Magnesium Alloys, Met. Sci. Heat. Treat., 2019, 61, p 318–324. https://doi.org/10.1007/s11041-019-00423-0

    Article  CAS  Google Scholar 

  14. A. Viswanath, H. Dieringa, K.A. Kumar, U.T.S. Pillai, and B.C. Pai, Investigation on Mechanical Properties and Creep Behavior of Stir Cast AZ91-SiCp Composites, J. Magnes. Alloy, 2015, 3, p 16–22. https://doi.org/10.1016/j.jma.2015.01.001

    Article  CAS  Google Scholar 

  15. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of As-Cast Mg–(1–10) % Sn Alloys, J. Alloys Compd., 2007, 440, p 122–126. https://doi.org/10.1016/j.jallcom.2006.09.024

    Article  CAS  Google Scholar 

  16. M. Razzaghi, H. Mirzadeh, and M. Emamy, Unraveling the Effects of Zn Addition and Hot Extrusion Process on the Microstructure and Mechanical Properties of As-Cast Mg-2Al Magnesium Alloy, Vacuum, 2019, 167, p 214–222. https://doi.org/10.1016/j.vacuum.2019.06.013

    Article  CAS  Google Scholar 

  17. N. Mahallawy, A.A. Diaa, M. Akdesir, and H. Palkowski, Microstructure and Mechanical Properties of Mg-6Sn And Mg-6Zn Alloys Prepared by Different Processing Techniques: A Comparative Study, Mater. Sci. Eng. Technol., 2016, 47, p 1–63. https://doi.org/10.1002/mawe.201500468

    Article  CAS  Google Scholar 

  18. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, and G. Myilsamy, Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review, Met. Mater. Int., 2020, 26, p 409–430. https://doi.org/10.1007/s12540-019-00346-8

    Article  CAS  Google Scholar 

  19. A. Ercetin, Ö. Özgün, K. Aslantas, and G. Aykutoğlu, The Microstructure, degradation behavior and cytotoxicity effect of Mg-Sn-Zn alloys in vitro tests, SN Appl. Sci., 2020, 2, p 173. https://doi.org/10.1007/s42452-020-1988-9

    Article  CAS  Google Scholar 

  20. F. Qi, D. Zhang, X. Zhang, and X. Xu, Effect of Sn Addition on the Microstructure and Mechanical Properties of Mg-6Zn-1Mn (wt.%) Alloy, J. Alloys Compd., 2014, 585, p 656–666. https://doi.org/10.1016/j.jallcom.2013.09.156

    Article  CAS  Google Scholar 

  21. L.L. Chang, H. Tang, and J. Guo, Strengthening Effect of Nano and Micro-Sized Precipitates in the Hot-Extruded Mg-5Sn-3Zn Alloys with Ca Addition, J. Alloys Compd., 2017, 703, p 552–559. https://doi.org/10.1016/j.jallcom.2017.01.274

    Article  CAS  Google Scholar 

  22. M.E. Turan, Y. Sun, Y. Akgul, Y. Turen, and H. Ahlatci, The Effect of GNPs on Wear and Corrosion Behaviors of Pure Magnesium, J. Alloys Compd., 2017, 724, p 14–23. https://doi.org/10.1016/j.jallcom.2017.07.022

    Article  CAS  Google Scholar 

  23. P. Emadi and C. Ravindran, The Influence of High Temperature Ultrasonic Processing Time on the Microstructure and Mechanical Properties AZ91E Magnesium Alloy, J. Mater. Eng. Perform., 2021, 30, p 1188–1199.

    Article  CAS  Google Scholar 

  24. Y. Fu, Y. Li, A. Hu, H. Hu, and X. Nie, Microstructure, Tensile Properties and Fracture Behavior of Squeeze-Cast Mg Alloy AZ91 with Thick Cross Section, J. Mater. Eng. Perform., 2020, 29, p 4130–4141. https://doi.org/10.1007/s11665-020-04910-x

    Article  CAS  Google Scholar 

  25. H. Zengin, Y. Turen, and L. Elen, A Comparative Study on Microstructure, Mechanical and Tribological Properties of A4, AE41, AS41 and AJ41 Magnesium Alloy, J. Mater. Eng. Perform., 2019, 28, p 4647–4657. https://doi.org/10.1007/s11665-019-04223-8

    Article  CAS  Google Scholar 

  26. L. Guo, R. Fu, J. Pei, J. Wang, H. Zhao, B. Song, and Z. Chen, Microstructure, Texture, and Mechanical Properties of Continuously Extruded and Rolled AZ31 Magnesium Alloy Sheet, J. Mater. Eng. Perform., 2019, 28, p 6692–6703. https://doi.org/10.1007/s11665-019-04394-4

    Article  CAS  Google Scholar 

  27. Ö. Özgün, K. Aslantaş, and A. Erçetin, Powder Metallurgy Mg-Sn alloys: Production and Characterization, Sci. Iran, 2020, 27, p 1255–1265. https://doi.org/10.24200/sci.2019.50212.1578

    Article  Google Scholar 

  28. G. Nayyeri and R. Mahmudi, Enhanced Creep Properties of a Cast Mg-5Sn Alloy Subjected to Aging-Treatment, Mater. Sci. Eng. A, 2010, 527, p 4613–4618. https://doi.org/10.1016/j.msea.2010.04.015

    Article  CAS  Google Scholar 

  29. M. Wahba and S. Katayama, Laser Welding of AZ31B Magnesium Alloy to Zn-Coated Steel, Mater. Des., 2012, 35, p 701–706. https://doi.org/10.1016/j.matdes.2011.10.031

    Article  CAS  Google Scholar 

  30. M.E. Turan, H. Zengin, and Y. Sun, Dry Sliding Wear Behavior of (MWCNT+Gnps) Reinforced AZ91 Magnesium Matrix Hybrid Composites, Met. Mater. Int., 2020, 26, p 541–550. https://doi.org/10.1007/s12540-019-00338-8

    Article  CAS  Google Scholar 

  31. H. Zengin, Y. Turen, H. Ahlatci, and Y. Sun, Microstructure, Mechanical Properties and Corrosion Resistance of As-Cast and As-Extruded Mg-4Zn-1La Magnesium Alloy, Rare Met., 2020, 39, p 909–917. https://doi.org/10.1007/s12598-018-1045-7

    Article  CAS  Google Scholar 

  32. C. Jihua, C. Zhenhua, Y. Hongge, and F. Zhang, Microstructural Characterization and Mechanical Properties of a Mg-6Zn-3Sn-2Al Alloy, J. Alloys Compd., 2009, 467, p L1–L7. https://doi.org/10.1016/j.jallcom.2007.11.118

    Article  CAS  Google Scholar 

  33. Y. Galindez, E. Correa, A.A. Zuleta, A. Valencia-Escobar, D. Calderon, L. Toro, P. Chacon, and F. Echeverria, Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering, Met. Mater. Int., 2019 https://doi.org/10.1007/s12540-019-00490-1

    Article  Google Scholar 

  34. D. Gu, J. Peng, J. Wang, and F. Pan, Effect of Mn Modification on Microstructure and Mechanical Properties of Magnesium Alloy with Low Gd Content, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-019-00588-6

    Article  Google Scholar 

  35. A. Ercetin, Ö. Özgün, and K. Aslantas, Investigation of Mechanical Properties of Mg5Sn-xZn Alloys Produced Through New Method in Powder Metallurgy, J. Test. Eval., 2020 https://doi.org/10.1520/JTE20200020

    Article  Google Scholar 

  36. M. Sun, M. Liu, B. Zhang, Z. Chen, and H. Jiang, Microstructures and Mechanical Propeties of As-Extruded AZ31-xSm Magnesium Alloy, J. Mater. Eng. Perform., 2020, 29, p 5273–5281. https://doi.org/10.1007/s11665-020-05047-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Bingol University, Central Research Laboratory of Bingol University, and Afyon Kocatepe University of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ercetin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercetin, A. Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition. J. of Materi Eng and Perform 30, 4254–4262 (2021). https://doi.org/10.1007/s11665-021-05814-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05814-0

Keywords

Navigation