Skip to main content
Log in

Automated Grain Counting for the Microstructure of Mg Alloys Using an Image Processing Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a practical and swift approach for calculating the number of grains in a microstructure and determining the ASTM grain size of Mg alloys was demonstrated using computer vision technology. In the experiments, Mg alloys were used as work materials. Microscopic images were taken by scanning electron microscopy (SEM) and were subjected to the image processing method. The grains in the microstructure were counted by the image processing method and manually. The experimental results were examined by comparing the manual and automated grain counting results. The standard deviation of the grain numbers was found to be 6% between the manual and automated counting methods. The success rate in the comparison of the grain numbers is approximately 94%. Moreover, ASTM grain sizes were calculated according to the number of grains determined in the SEM images, and a high success rate was achieved by equalizing the ASTM grain sizes of each alloy according to both methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. Soyama and C.T. Rios, Effect of Subcritical Annealing on the Microstructure and Mechanical Properties of a Precipitation-Hardened Al-Zn-Mg-Cu Alloy, J. Mater. Eng. Perform., 2021, 30(2), p 1012–1021. https://doi.org/10.1007/s11665-020-05416-2

    Article  CAS  Google Scholar 

  2. P. Barick and B.P. Saha, Effect of Boron Nitride Addition on Densification, Microstructure, Mechanical, Thermal, and Dielectric Properties of β-SiAlON Ceramic, J. Mater. Eng. Perform., 2021, 30(5), p 3603–3611. https://doi.org/10.1007/s11665-021-05692-6

    Article  CAS  Google Scholar 

  3. P. Barick, A. Chatterjee, B. Majumdar, B.P. Saha and R. Mitra, Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques, Metall. Mater. Trans. A, 2018, 49(4), p 1182–1201. https://doi.org/10.1007/s11661-018-4486-6

    Article  CAS  Google Scholar 

  4. A. Ercetin, Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021, 30(6), p 4254–4262. https://doi.org/10.1007/s11665-021-05814-0

    Article  CAS  Google Scholar 

  5. J. Soyama, T.P. Lopes, G. Zepon, C.S. Kiminami, W.J. Botta and C. Bolfarini, Wear Resistant Duplex Stainless Steels Produced by Spray Forming, Met. Mater. Int., 2019, 25(2), p 456–464. https://doi.org/10.1007/s12540-018-0202-8

    Article  CAS  Google Scholar 

  6. T.O. Sadiq, B.A. Hameed, J. Idris, O. Olaoye, S. Nursyaza, Z.H. Samsudin and M.I. Hasnan, Effect of Different Machining Parameters on Surface Roughness of Aluminium Alloys Based on Si and Mg Content, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(10), p 451. https://doi.org/10.1007/s40430-019-1948-8

    Article  CAS  Google Scholar 

  7. R.C. Panziera, A.C.C. de Oliveira, M. Pereira and F. Ratszunei, Study of the Effects of the Laser Remelting Process on the Microstructure and Properties of the WC–10Co–4Cr Coating Sprayed by HVOF, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(3), p 119. https://doi.org/10.1007/s40430-020-2201-1

    Article  CAS  Google Scholar 

  8. S.K. Bonagani, V. Kain, N. Naveen Kumar and H. Donthula, Effect of Austenitization-Cooling on Microstructure and Localized Corrosion Behavior of 13Cr Martensitic Stainless Steel, J. Mater. Eng. Perform., 2021, 30(3), p 2291–2299. https://doi.org/10.1007/s11665-021-05460-6

    Article  CAS  Google Scholar 

  9. P.K. Swamy, S. Mylaraiah, M.P. Gowdru Chandrashekarappa, A. Lakshmikanthan, D.Y. Pimenov, K. Giasin and M. Krishna, Corrosion Behaviour of High-Strength Al 7005 Alloy and Its Composites Reinforced with Industrial Waste-Based Fly Ash and Glass Fibre: Comparison of Stir Cast and Extrusion Conditions, Materials (Basel), 2021, 14(14), p 3929. https://doi.org/10.3390/ma14143929

    Article  CAS  Google Scholar 

  10. A. Ercetin, A Novel Mg-Sn-Zn-Al-Mn Magnesium Alloy with Superior Corrosion Properties, Metall. Res. Technol., 2021, 118(5), p 504. https://doi.org/10.1051/metal/2021064

    Article  CAS  Google Scholar 

  11. C.M.P. Kumar, A. Lakshmikanthan, M.P.G. Chandrashekarappa, D.Y. Pimenov and K. Giasin, Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant Applications, Coatings, 2021, 11(6), p 712. https://doi.org/10.3390/coatings11060712

    Article  CAS  Google Scholar 

  12. A. Erçetin, K. Aslantas and Ö. Özgün, Micro-End Milling of Biomedical TZ54 Magnesium Alloy Produced through Powder Metallurgy, Mach. Sci. Technol., 2020, 24(6), p 924–947. https://doi.org/10.1080/10910344.2020.1771572

    Article  CAS  Google Scholar 

  13. Ş Bayraktar and F. Afyon, Machinability Properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu Alloys, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(4), p 187. https://doi.org/10.1007/s40430-020-02281-x

    Article  CAS  Google Scholar 

  14. X. Huang and S. Huang, Macro-Alloying Effects of Al and Ag on the Age-Hardening Behavior and Precipitates Microstructure of a Mg-4Sn Alloy, JOM, 2020, 72(3), p 1384–1394. https://doi.org/10.1007/s11837-019-03980-0

    Article  CAS  Google Scholar 

  15. Ö. Özgün, K. Aslantaş and A. Erçetin, Powder Metallurgy Mg-Sn Alloys: Production and Characterization, Sci. Iran., 2020, 27(3), p 1255–1265. https://doi.org/10.24200/SCI.2019.50212.1578

    Article  Google Scholar 

  16. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  17. C. Shuai, Y. Zhou, X. Lin, Y. Yang, C. Gao, X. Shuai, H. Wu, X. Liu, P. Wu and P. Feng, Preparation and Characterization of Laser-Melted Mg–Sn–Zn Alloys for Biomedical Application, J. Mater. Sci. Mater. Med., 2017, 28(1), p 13. https://doi.org/10.1007/s10856-016-5825-z

    Article  CAS  Google Scholar 

  18. V. Jothi, A.Y. Adesina, M.M. Rahman, A.M. Kumar and J.S.N. Ram, Improved Adhesion and Corrosion Resistant Performance of Polyurethane Coatings on Anodized Mg Alloy for Aerospace Applications, J. Mater. Eng. Perform., 2020, 29(4), p 2586–2596. https://doi.org/10.1007/s11665-020-04747-4

    Article  CAS  Google Scholar 

  19. W. Kasprzak, F. Czerwinski, M. Niewczas and D.L. Chen, Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications, J. Mater. Eng. Perform., 2015, 24(3), p 1365–1378. https://doi.org/10.1007/s11665-015-1392-6

    Article  CAS  Google Scholar 

  20. I. Gunes, T. Uygunoglu and M. Erdogan, Effect of Sintering Duration on Some Properties of Pure Magnesium, Powder Metall. Met. Ceram., 2015, 54(3–4), p 156–165. https://doi.org/10.1007/s11106-015-9693-8

    Article  CAS  Google Scholar 

  21. I. Yildiz, A.G. Çelik and I. Gunes, Characterization and Diffusion Kinetics of Borided Ni–Mg Alloys, Prot. Met. Phys. Chem. Surf., 2020, 56(5), p 1015–1022. https://doi.org/10.1134/S2070205120050287

    Article  Google Scholar 

  22. A.K. Sharma and S. Gupta, Microwave Processing of Biomaterials for Orthopedic Implants: Challenges and Possibilities, JOM, 2020, 72(3), p 1211–1228. https://doi.org/10.1007/s11837-020-04003-z

    Article  Google Scholar 

  23. A. Lakshmikanthan, T. Ram Prabhu, S.B. Udayagiri, P.G. Koppad, M. Gupta, K. Munishamaiah and S. Bontha, The Effect of Heat Treatment on the Mechanical and Tribological Properties of Dual Size SiC Reinforced A357 Matrix Composites, J. Mater. Res. Technol., 2020, 9(3), p 6434–6452. https://doi.org/10.1016/j.jmrt.2020.04.027

    Article  CAS  Google Scholar 

  24. A. Lakshmikanthan, S. Bontha, M. Krishna, P.G. Koppad and T. Ramprabhu, Microstructure, Mechanical and Wear Properties of the A357 Composites Reinforced with Dual Sized SiC Particles, J. Alloys Compd., 2019, 786, p 570–580. https://doi.org/10.1016/j.jallcom.2019.01.382

    Article  CAS  Google Scholar 

  25. M. Lotfpour, M. Emamy, S.H. Allameh and B. Pourbahari, Effect of Hot Extrusion on Microstructure and Tensile Properties of Ca Modified Mg-Mg2Si Composite, Procedia Mater. Sci., 2015, 11, p 38–43.

    Article  CAS  Google Scholar 

  26. M. Lotfpour, M. Emamy and C. Dehghanian, Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy, J. Mater. Eng. Perform., 2020, 29(5), p 2991–3003. https://doi.org/10.1007/s11665-020-04856-0

    Article  CAS  Google Scholar 

  27. A. Ercetin, Ö. Özgün and K. Aslantas, Investigation of Mechanical Properties of Mg5Sn-XZn Alloys Produced through New Method in Powder Metallurgy, J. Test. Eval., 2021, 49(5), p 3506–3518. https://doi.org/10.1520/jte20200020

    Article  Google Scholar 

  28. M. Li, Q. Chen, G. Zhao, Z. Huang, J. Tao, Y. Wan and H. Wang, Superior Creep Behavior of N-SiCp/Mg–9%Al Composites Fabricated by Ultrasonic-Assisted Semi-Solid Hot Pressing of Powder, Appl. Phys. A Mater. Sci. Process., 2019, 125(2), p 1–8. https://doi.org/10.1007/s00339-018-2301-2

    Article  CAS  Google Scholar 

  29. Sachinkumar, S. Narendranath, and D. Chakradhar, Microstructure, Hardness and Tensile Properties of Friction Stir Welded Aluminum Matrix Composite Reinforced with SiC and Fly Ash, Silicon, 11(6), p 2557–2565, (2019) https://doi.org/10.1007/s12633-018-0044-5

  30. K.M. Em Akra, M. Akkaş, M. Boz and E. Seabra, The Production of AZ31 Alloys by Gas Atomization Method and Its Characteristics, Russ. J. Non-Ferrous Met., 2020, 61(3), p 332–345. https://doi.org/10.3103/S1067821220030074

    Article  Google Scholar 

  31. K. Özsoy, Examining Mechanical Properties of Profiles Manufactured Aluminium Extrusion Dies Using Powder Bed Fusion, Measurement, 2021, 177, 109266. https://doi.org/10.1016/j.measurement.2021.109266

    Article  Google Scholar 

  32. G. Riquet, S. Marinel, Y. Bréard and C. Harnois, Sintering Mechanism and Grain Growth in CaCu 3 Ti 4 O 12 Ceramics, Ceram. Int., 2019, 45(7), p 9185–9191.

    Article  CAS  Google Scholar 

  33. D.M. Daniel, B.N. Ávila, M.V. Garcia, J.C. Lopes, F.S.F. Ribeiro, H.J. de Mello, L.E. de Angelo Sanchez, P.R. Aguiar and E.C. Bianchi, Grinding Comparative between Ductile Iron and Austempered Ductile Iron under CBN Wheel Combined to Abrasive Grains with High and Low Friability, Int. J. Adv. Manuf. Technol., 2020, 109(9–12), p 2679–2690. https://doi.org/10.1007/s00170-020-05787-9

    Article  Google Scholar 

  34. Sachinkumar, S. Narendranath, and D. Chakradhar, Characterization and Evaluation of Joint Properties of FSWed AA6061/SiC/FA Hybrid AMCs Using Different Tool Pin Profiles, Trans. Indian Inst. Met. 73(9), 2269–2279, (2020) doi:https://doi.org/10.1007/s12666-020-02035-2

  35. A. Afsharnaderi, M. Malekan, M. Emamy, J. Rasizadeh Ghani and M. Lotfpour, Microstructure Evolution and Mechanical Properties of the AZ91 Magnesium Alloy with Sr and Ti Additions in the As-Cast and as-Aged Conditions, J. Mater. Eng. Perform., 2019, 28(11), p 6853–6863. https://doi.org/10.1007/s11665-019-04396-2

    Article  CAS  Google Scholar 

  36. C.H. Cáceres and A. Blake, The Strength of Concentrated Mg-Zn Solid Solutions, Phys. Status Solidi Appl. Res., 2002, 194(1), p 147–158.

    Article  Google Scholar 

  37. P. Emadi and C. Ravindran, The Influence of High Temperature Ultrasonic Processing Time on the Microstructure and Mechanical Properties AZ91E Magnesium Alloy, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-020-05419-z

    Article  Google Scholar 

  38. W.T. Abbood, O.I. Abdullah and E.A. Khalid, A Real-Time Automated Sorting of Robotic Vision System Based on the Interactive Design Approach, Int. J. Interact. Des. Manuf., 2020, 14(1), p 201–209. https://doi.org/10.1007/s12008-019-00628-w

    Article  Google Scholar 

  39. S. Puttemans, T. Goedemé, A. Mian, T.B. Moeslund and R. Gade, Special Issue on Advanced Machine Vision: Preface by the Guest Editors, Mach. Vis. Appl., 2020 https://doi.org/10.1007/s00138-020-01061-w

    Article  Google Scholar 

  40. F. Akkoyun, A. Ercetin, K. Aslantas, D.Y. Pimenov, K. Giasin, A. Lakshmikanthan and M. Aamir, Measurement of Micro Burr and Slot Widths through Image Processing: Comparison of Manual and Automated Measurements in Micro-Milling, Sensors, 2021, 21(13), p 4432. https://doi.org/10.3390/s21134432

    Article  CAS  Google Scholar 

  41. F. Akkoyun and A. Özçelik, Rapid Characterization of Cell and Bacteria Counts Using Computer Vision, Turkish J. Nat. Sci., 2021, 10(1), p 269–274. https://doi.org/10.46810/tdfd.902441

    Article  Google Scholar 

  42. K. Özsoy, B. Aksoy and O.K.M. Salman, Investigation of the Dimensional Accuracy Using Image Processing Techniques in Powder Bed Fusion, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., 2021, 235(5), p 1587–1597. https://doi.org/10.1177/09544089211011011

    Article  CAS  Google Scholar 

  43. D. Chen, Y.P. Ren, Y. Guo, W.L. Pei, H. Da Zhao and G.W. Qln, Microstructures and Tensile Properties of As-Extruded Mg-Sn Binary Alloys, Trans. Nonferrous Met. Soc. China, 2010, 20(7), p 1321–1325.

    Article  CAS  Google Scholar 

  44. X. Liu, D. Shan, Y. Song, R. Chen and E. Han, Influences of the Quantity of Mg2Sn Phase on the Corrosion Behavior of Mg-7Sn Magnesium Alloy, Electrochim. Acta, 2011, 56(5), p 2582–2590.

    Article  CAS  Google Scholar 

  45. K. Ongena, C. Das, J.L. Smith, S. Gil and G. Johnston, Determining Cell Number during Cell Culture Using the Scepter Cell Counter, J. Vis. Exp., 2010, 45, p 2204. https://doi.org/10.3791/2204

    Article  Google Scholar 

  46. K. Hanbay, N. Alpaslan, M.F. Talu and D. Hanbay, Principal Curvatures Based Rotation Invariant Algorithms for Efficient Texture Classification, Neurocomputing, 2016, 199, p 77–89.

    Article  Google Scholar 

  47. S. Golgiyaz, M.F. Talu and C. Onat, Artificial Neural Network Regression Model to Predict Flue Gas Temperature and Emissions with the Spectral Norm of Flame Image, Fuel, 2019, 255, p 115827.

    Article  Google Scholar 

  48. Z. Akkus, P. Kostandy, K.A. Philbrick and B.J. Erickson, Robust Brain Extraction Tool for CT Head Images, Neurocomputing, 2020, 392, p 189–195.

    Article  Google Scholar 

  49. W. Wei and Y. Xin, Rapid, Man-Made Object Morphological Segmentation for Aerial Images Using a Multi-Scaled, Geometric Image Analysis, Image Vis. Comput., 2010, 28(4), p 626–633. https://doi.org/10.1016/j.imavis.2009.10.002

    Article  Google Scholar 

  50. S.R. Biswal, T. Sahoo and S. Sahoo, Prediction of Grain Boundary of a Composite Microstructure Using Digital Image Processing: A Comparative Study, Mater. Today Proc., 2021, 41, p 357–362. https://doi.org/10.1016/j.matpr.2020.09.559

    Article  Google Scholar 

  51. D.G. Leo Prakash, D. Regener and W.J.J. Vorster, Effect of Long Term Annealing on the Microstructure of Hpdc AZ91 Mg Alloy: A Quantitative Analysis by Image Processing, Comput. Mater. Sci., 2008, 43(4), p 759–766. https://doi.org/10.1016/j.commatsci.2008.01.040

    Article  CAS  Google Scholar 

  52. O.B. Abouelatta, Classification of Copper Alloys Microstructure Using Image Processing and Neural Network, J. Am. Sci., 2013, 9(6), p 213–223.

    Google Scholar 

  53. J. Muirhead, J. Cawley, A. Strang, C.A. English and J. Titchmarsh, Quantitative Aspects of Grain Size Measurement, Mater. Sci. Technol., 2000, 16(10), p 1160–1166. https://doi.org/10.1179/026708300101507082

    Article  CAS  Google Scholar 

  54. A. Ercetin, Ö. Özgün, K. Aslantas and G. Aykutoğlu, The Microstructure, Degradation Behavior and Cytotoxicity Effect of Mg–Sn–Zn Alloys in Vitro Tests, SN Appl. Sci., 2020, 2(2), p 173. https://doi.org/10.1007/s42452-020-1988-9

    Article  CAS  Google Scholar 

  55. A. Ercetin, F. Akkoyun, E. Şimşir, D.Y. Pimenov, K. Giasin, M.P. Gowdru Chandrashekarappa, A. Lakshmikanthan and S. Wojciechowski, Image Processing of Mg-Al-Sn Alloy Microstructures for Determining Phase Ratios and Grain Size and Correction with Manual Measurement, Materials (Basel), 2021, 14(17), p 5095. https://doi.org/10.3390/ma14175095

    Article  CAS  Google Scholar 

  56. S.H. Kim, J.U. Lee, Y.J. Kim, J.G. Jung and S.H. Park, Controlling the Microstructure and Improving the Tensile Properties of Extruded Mg-Sn-Zn Alloy through Al Addition, J. Alloys Compd., 2018, 751, p 1–11.

    Article  CAS  Google Scholar 

  57. E. Karakulak and A. Review, Past, Present and Future of Grain Refining of Magnesium Castings, J. Magnes. Alloys, 2019 https://doi.org/10.1016/j.jma.2019.05.001

    Article  Google Scholar 

  58. A. Campbell, P. Murray, E. Yakushina, S. Marshall and W. Ion, New Methods for Automatic Quantification of Microstructural Features Using Digital Image Processing, Mater. Des., 2018, 141, p 395–406. https://doi.org/10.1016/j.matdes.2017.12.049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bingol University, the Central Research Laboratory of Bingol University, and its workers for their support in the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ercetin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkoyun, F., Ercetin, A. Automated Grain Counting for the Microstructure of Mg Alloys Using an Image Processing Method. J. of Materi Eng and Perform 31, 2870–2877 (2022). https://doi.org/10.1007/s11665-021-06436-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06436-2

Keywords

Navigation