Skip to main content

Advertisement

Log in

New Insights into the Characterization and Formation of the Interface of A356/AZ91D Bimetallic Composites Fabricated by Compound Casting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, the A356/AZ91D bimetallic composites were prepared by the lost foam casting (LFC) solid–liquid compound process, and the characterization and formation of the interface of the A356/AZ91D bimetallic composites were investigated. The crystallographic orientations of intermetallic compounds in the interface layer were also studied. The results obtained showed that the interface layer was constituted by four regions: Mg2Si + Al3Mg2, Mg2Si + Al3Mg2 + Al12Mg17, Mg2Si + Al12Mg17, and Al12Mg17 + δ-Mg eutectic + Mg2Si. The formation of the interface layer was attributed to fusion bonding and diffusion bonding, and the Al3Mg2, Al12Mg17, and α-Al12Mg17 dendritic crystals and Al12Mg17 + δ-Mg eutectic intermetallic compounds successively formed in the interface layer. The Al3Mg2 and Al12Mg17 phases grew, respectively, with {0001} and {111} preferred crystallographic orientation, while the texture of the Mg2Si phase was essentially random in the interface. The interface layer of the A356/AZ91D bimetallic composites had a higher hardness than the substrates, and the Mg2Si phase obtained the highest hardness in the intermetallic phases. The shear strength and tensile strength of the A356/AZ91D bimetallic composites reached 47.67 and 48.17 MPa, respectively. The fracture surface of the bimetallic composites exhibited a brittle fracture morphology with a partial plastic deformation, and the fracture mainly initiated with the junction zone between the Mg2Si + Al3Mg2 and Mg2Si + Al12Mg17 intermetallic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3891–3939.

    Article  Google Scholar 

  2. X.X. Dong, Y.J. Zhang, and S.X. Ji: Mater. Sci. Eng. A, 2017, vol. 700, pp. 291–300.

    Article  Google Scholar 

  3. Y.M. Zhu, S.W. Xu, and J.F. Nie: Acta Mater., 2018, vol. 143, pp. 1–12.

    Article  Google Scholar 

  4. S.M. Kayhan, A. Tahmasebifar, M. Koç, Y. Usta, A. Tezcaner, and Z. Evis: Mater. Des., 2016, vol. 93, pp. 397–408.

    Article  Google Scholar 

  5. L. Yang, Z. Li, Y. Zhang, S. Wei, and F. Liu: Appl. Surf. Sci., 2018, vol. 435, pp. 1187–98.

    Article  Google Scholar 

  6. M. Sivapragash, P. Kumaradhas, B. StanlyJonesRetnam, X. FelixJoseph, and U.T.S. Pillai: Mater. Des., 2016, vol. 90, pp. 713–22.

    Article  Google Scholar 

  7. B. Feng, Y. Xin, F. Guo, H. Yu, Y. Wu, and Q. Liu: Acta Mater., 2016, vol. 120, pp. 379–90.

    Article  Google Scholar 

  8. J.S. Kim, K.S. Lee, Y.N. Kwon, B.J. Lee, Y.W. Chang, and S. Lee: Mater. Sci. Eng. A, 2015, vol. 628, pp. 1–10.

    Article  Google Scholar 

  9. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier: Scripta Mater., 2009, vol. 61, pp. 717–20.

    Article  Google Scholar 

  10. C.Y. Liu, Q. Wang, Y.Z. Jia, R. Jing, B. Zhang, M.Z. Ma, and R.P. Liu: Mater. Sci. Eng. A, 2012, vol. 556, pp. 1–8.

    Article  Google Scholar 

  11. A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad: Mater. Sci. Eng. A, 2016, vol. 651, pp. 720–33.

    Article  Google Scholar 

  12. Z.D. Liang, G.L. Qin, L.Y. Wang, X.M. Meng, and F. Li: Mater. Sci. Eng. A, 2015, vol. 645, pp. 170–80.

    Article  Google Scholar 

  13. M. Kimura, A. Fuji, and S. Shibata: Mater. Des., 2015, vol. 85, pp. 169–79.

    Article  Google Scholar 

  14. Y. Wang and P.B. Prangnell: Mater. Charact., 2017, vol. 134, pp. 84–95.

    Article  Google Scholar 

  15. Y. Gao, Y. Morisada, H. Fujii, and J. Liao: Mater. Sci. Eng. A, 2018, vol. 711, pp. 109–18.

    Article  Google Scholar 

  16. B. Zhu, W. Liang, and X. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6584–88.

    Article  Google Scholar 

  17. M. Joseph Fernandus, T. Senthilkumar, V. Balasubramanian, and S. Rajakumar: Mater. Des., 2012, vol. 33, pp. 31–41.

    Article  Google Scholar 

  18. G. Mahendran, V. Balasubramanian, and T. Senthilvelan: Int. J. Adv. Manuf. Technol., 2009, vol. 42, pp. 689–95.

    Article  Google Scholar 

  19. J. Zhang, G. Luo, Y. Wang, Q. Shen, and L. Zhang: Mater. Lett., 2012, vol. 83, pp. 189–91.

    Article  Google Scholar 

  20. G. Xu, A.A. Luo, Y. Chen, and A.K. Sachdev: Mater. Sci. Eng. A, 2014, vol. 595, pp. 154–58.

    Article  Google Scholar 

  21. E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, and S. Kamado: J. Mater. Sci., 2011, vol. 46, pp. 6491–99.

    Article  Google Scholar 

  22. E. Hajjari, M. Divandari, S.H. Razavi, T. Homma, and S. Kamado: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4667–77.

    Article  Google Scholar 

  23. W. Jiang, Z. Fan, G. Li, L. Yang, and X. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6487–97.

    Article  Google Scholar 

  24. S. Fan, W. Jiang, G. Li, J. Mo, and Z. Fan: Mater. Manuf. Process., 2017, vol. 32, pp. 1391–97.

    Article  Google Scholar 

  25. W.D. Griffiths and M.J. Ainsworth: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3137–49.

    Article  Google Scholar 

  26. W.M. Jiang, Z.T. Fan, D.J. Liu, D.F. Liao, Z. Zhao, X.P. Dong, and H.B. Wu: Int. J. Cast Met. Res., 2012, vol. 25, pp. 47–52.

    Article  Google Scholar 

  27. L. Wang, N. Limodin, A.E. Bartali, Jean-François Witz, R. Seghir, Jean-Yves Buffiere, and E. Charkaluk: Mater. Sci. Eng. A, 2016, vol. 673, pp. 362–72.

    Article  Google Scholar 

  28. X.J. Liu, S.H. Bhavnani, and R.A. Overfelt: J. Mater. Process. Technol., 2007, vol. 182, pp. 333–42.

    Article  Google Scholar 

  29. J. Shayegh, S. Hossainpour, M. Rezaei, and A. Charchi: Int. Commun. Heat Mass Transfer, 2010, vol. 37, pp. 1396–1402.

    Article  Google Scholar 

  30. W. Jiang, Z. Fan, D. Liu, D. Liao, X. Dong, and X. Zong: Mater. Sci. Eng. A, 2013, vol. 560, pp. 396–403.

    Article  Google Scholar 

  31. G. Li, W. Jiang, Z. Fan, Z. Jiang, X. Liu, and F. Liu: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1355–68.

    Article  Google Scholar 

  32. W. Jiang, G. Li, Z. Fan, L. Wang, and F. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2462–70.

    Article  Google Scholar 

  33. S.M. Emami, M. Divandari, E. Hajjari, and H. Arabi: Int. J. Cast Met. Res., 2013, vol. 26, pp. 43–50.

    Article  Google Scholar 

  34. K.A. Guler, A. Kisasoz, and A. Karaaslan: Mater. Test., 2014, vol. 56, pp. 700–02.

    Article  Google Scholar 

  35. G. Liu, Q. Wang, L. Zhang, B. Ye, H. Jiang, and W. Ding: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 661–72.

    Article  Google Scholar 

  36. O. Fornaro and H.A. Palacio: J. Mater. Sci., 2009, vol. 44, pp. 4342–47.

    Article  Google Scholar 

  37. I.U. Haq, J.S. Shin, and Z.H. Lee: Met. Mater. Int., 2004, vol. 10, pp. 89–96.

    Article  Google Scholar 

  38. J.C. Liu, J. Hu, X.Y. Nie, H.X. Li, Q. Du, J.S. Zhang, and L.Z. Zhuang: Mater. Sci. Eng. A, 2015, vol. 635, pp. 70–76.

    Article  Google Scholar 

  39. S.M. Emami, M. Divandari, H. Arabi, and E. Hajjari: J. Mater. Eng. Perform., 2013, vol. 22, pp. 123–30.

    Article  Google Scholar 

  40. K. He, J.H. Zhao, P. Li, J.S. He, and Q. Tang: Mater. Des., 2016, vol. 112, pp. 553–64.

    Article  Google Scholar 

  41. N. Liu, C.C. Liu, C.Y. Liang, and Y.G. Zhang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3556–64.

    Article  Google Scholar 

  42. U.R. Kattner and T.B. Massalski: ASM International, Material Park, OH, 1990.

    Google Scholar 

  43. M. Khodai and N. Parvin: J. Mater. Process. Technol., 2008, vol. 206, pp. 1–6.

    Article  Google Scholar 

  44. V. Raghavan: J. Phase Equil. Diffus., 2007, vol. 28, pp. 189–91.

    Article  Google Scholar 

  45. Q.G. Wang, and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

    Article  Google Scholar 

  46. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

  47. Y. Fu, Y. Zhang, J. Jie, K. Svynarenko, C. Liang, and T. Li: China Foundry, 2017, vol. 14, pp. 194–98.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by the National Natural Science Foundation of China (Grant Nos. 51775204 and 51204124), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201821), the Natural Science Foundation of Hubei Province, China (Grant No. 2017CFB488), the Research Project of State Key Laboratory of Materials Processing and Die & Mould Technology, and the Analytical and Testing Center, HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Jiang.

Additional information

Manuscript submitted July 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Jiang, W., Yang, W. et al. New Insights into the Characterization and Formation of the Interface of A356/AZ91D Bimetallic Composites Fabricated by Compound Casting. Metall Mater Trans A 50, 1076–1090 (2019). https://doi.org/10.1007/s11661-018-5022-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5022-4

Navigation