Skip to main content

Advertisement

Log in

Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants are immobile and are exposed to various biotic and abiotic stresses, including heat, cold, drought, flooding, nutrient deficiency, heavy metal exposure, phytopathogens, and pest attacks. The stressors significantly affect agricultural productivity when exceed a certain threshold. It has been reported that most of the stressed plants are reported to have increased ethylene synthesis from its precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Ethylene is a plant hormone that plays a vital role in the regulation of various physiological processes, such as respiration, nitrogen fixation, and photosynthesis. The increment in the plant hormone ethylene would reduce plant growth and development, and if the ethylene level increased beyond the limit, it could also result in plant death. Therefore, plant growth–promoting bacteria (PGPB) possessing ACC deaminase activity play an essential role in the management of biotic and abiotic stresses by hydrolysing 1-aminocyclopropane-1-carboxylic acid using ACC deaminase. In this review, the importance of ACC deaminase–producing bacteria in promoting plant growth under various abiotic stressors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

PGPB:

Plant growth–promoting bacteria

α :

Alpha

ACC:

1-Aminocyclopropane-1-carboxylic acid

PGPR:

Plant growth–promoting rhizobacteria

ACCD:

1-Aminocyclopropane-1-carboxylic acid deaminase

kDa:

Kilo dalton

Lys:

Lysine

PLP:

Pyridoxal-5-phosphate

β:

Beta

CO2 :

Carbon dioxide

ROS:

Reactive oxygen species

CAT:

Catalase

GR:

Glutathione reductase

APX:

Ascorbate peroxidase

SOD:

Superoxide dismutase

dS/m:

Decisiemens per meter

CaCl2 :

Calcium chloride

MgCl2 :

Magnesium chloride

NaCl2 :

Sodium chloride

ISR:

Induced systemic resistance

RWC:

Relative water content

Cr:

Chromium

Fe:

Iron

NPK:

Nitrogen, phosphorus, and potassium

Ni:

Nickel

Cd:

Cadmium

Cu:

Copper

References

  • Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44

    Article  CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology, 2nd edn. Academic Press Inc, San Diego

    Google Scholar 

  • Acuña JJ, Campos M, de la Luz MM, Jaisi DP, Jorquera MA (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190

    Article  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293

    Article  CAS  Google Scholar 

  • Akhgar AR, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468

    Article  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afr J Biotechnol 2:157–160

    Article  CAS  Google Scholar 

  • Baisak R, Rana D, Acharya PB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhisation in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterisation of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D (2019) Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In PGPR amelioration in sustainable agriculture (pp. 85–106). Woodhead Publishing.

  • Blum A (2011) Drought resistance–is it really a complex trait? Funct Plant Biol 38:753–757

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. Biochemistry and molecular biology of plants. In: Gruissem W, Jones R (Eds). American Society of Plant Physiologists, Rockville, 1158–1203.

  • Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Sharma AK (2018) Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum). Agricul Res 7:290–299

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Gupta VV, Franco CM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65:387–403

    Article  CAS  Google Scholar 

  • Chandran H, Meena M, Swapnil P (2021) Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability 13:10986

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2017) An overview of peatland restoration in North America: where are we after 25 years? Restor Ecol 25:283–292

    Article  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30–36

    CAS  Google Scholar 

  • Conesa MR, De La Rosa JM, Domingo R, Banon S, Perez-Pastor A (2016) Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson seedless) grown in pots. Sci Hortic 202:9–16

    Article  Google Scholar 

  • Covarrubias SA, Cabriales JJP (2017) Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Rev Int De Contam Ambient 33:7–21

    Article  Google Scholar 

  • Danish S, Kiran S, Fahad S, Ahmad N, Ali MA, Tahir FA, Nasim W (2019) Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf 185:109706

    Article  CAS  Google Scholar 

  • Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M (2020) ACC-deaminase producing plant growth-promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. Plos One 15:e0230615

    Article  CAS  Google Scholar 

  • del CarmenOrozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 235:126439

    Article  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  Google Scholar 

  • Donate-Correa J, León-Barrios M, Pérez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272

    Article  Google Scholar 

  • Dubois M, van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015, Article ID 756120.

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015a) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F (2016) Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front Plant Sci 7:1250

    Article  Google Scholar 

  • Fahad S, Ihsan MZ, Khaliq A, Daur I, Saud S, Alzamanan S, Nasim W, Abdullah M, Khan IA, Wu C, Wang D (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science 64(11):1473–1488

    Article  CAS  Google Scholar 

  • Fahad, S., Nie, L., Chen, Y., Wu, C., Xiong, D., Saud, S., Hongyan, L., Cui, K. and Huang, J., 2015. Crop plant hormones and environmental stress. Sustainable Agriculture Reviews, pp.371–400.

  • Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Arif, M. eds., 2021a. Engineering tolerance in crop plants against abiotic stress. CRC Press.

  • Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Turan, V. eds., 2021b. Sustainable Soil and Land Management and Climate Change. CRC Press.

  • Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Turan, V. eds., 2021c. Plant Growth Regulators for Climate-Smart Agriculture. CRC Press.

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  CAS  Google Scholar 

  • Ferreira NC, Mazzuchelli RDCL, Pacheco AC, Araujo FFD, Antunes JEL, Araujo ASFD (2018) Bacillus subtilis improves maize tolerance to salinity. Ciênc Rural 48, e20170910.

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356

    Article  CAS  Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, De Faria SM, Bâ AM (2007) Arbuscular mycorrhizal colonisation and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq seedlings. Mycorrhiza 17(3):159–166

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  CAS  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul 83:175–198

    Article  CAS  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    Article  CAS  Google Scholar 

  • Gowtham HG, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M, Niranjana SR (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Grobelak A, Kokot P, Świątek J, Jaskulak M, Rorat A (2018) Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J Ecol Eng 19:150–157

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Grow Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exper Bot 53:1–11

    Article  CAS  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128

    Article  CAS  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, del Carmen O-M, Macías-Rodríguez LI, Reyes-de la Cruz H, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  Google Scholar 

  • Heydarian Z, Gruber M, Glick BR, Hegedus DD (2018) Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front Microbiol 9:1297

    Article  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricul Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426

    Article  CAS  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18

    Article  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    Article  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012, Article ID 872875.

  • Huang XF, Zhou D, Lapsansky ER, Reardon KF, Guo J, Andales MJ, Manter DK (2017) Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419:523–539

    Article  CAS  Google Scholar 

  • Hye MZ, Shahjahan A, Danish S (2018) Mitigation of cadmium toxicity induced stress in wheat by acc-deaminase containing pgpr isolated from cadmium polluted wheat rhizosphere. Pak J Bot 50:1727–1734

    Google Scholar 

  • Ishitani M, Rao I, Wenzl P, Beebe S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crops Res 90:35–45

    Article  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterisation of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Kadioglu GB, Koseoglu MS, Ozdal M, Sezen A, Ozdal OG, Algur OF (2018) Isolation of cold tolerant and ACC deaminase producing plant growth promoting rhizobacteria from high altitudes. Rom Biotechnol Lett 23:13479

    CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE, Lee IJ (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19:1–14

    Article  Google Scholar 

  • Kaur J, Pandove G, Gangwar M, Brar SK, Sekhon KS (2018) Mitigating the impact of climate change on wheat by use of liquid microbial inoculants under different planting dates. Res Crops 19:365–372

    Google Scholar 

  • Khan NA, Mir MR, Nazar R, Singh S (2008) The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol 10:534–538

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808

    Article  CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  Google Scholar 

  • Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22:12479–12489

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol. 32, 4.

  • Li J, McConkey BJ, Cheng Z, Guo S, Glick BR (2013) Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteom 84:119–131

    Article  CAS  Google Scholar 

  • Mahmood A, Amaya R, Turgay OC, Yaprak AE, Taniguchi T, Kataoka R (2019) High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere 9:10–17

    Article  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  CAS  Google Scholar 

  • Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41:574–583

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Grow Regul 18:49–53

    Article  CAS  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S, Lehri A, Chauhan PS (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 363:639–658

    Article  CAS  Google Scholar 

  • Mukhtar T, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12, 2159.

  • Müller R, Stummann BM (2003) Ethylene. In: Reberts AV, Serge Gudin TD (eds) Encyclopedia of rose science. Elsevier, Academic Press, pp 557–564

    Chapter  Google Scholar 

  • Munir TM, Perkins M, Kaing E, Strack M (2015) Carbon dioxide flux and net primary production of a boreal treed bog: responses to warming and water-table-lowering simulations of climate change. Biogeosciences 12:1091–1111

    Article  Google Scholar 

  • Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Niranjana SR, Amruthesh KN (2021) Bio-prospecting of ACC deaminase producing rhizobacteria towards sustainable agriculture: a special emphasis on abiotic stress in plants. Appl Soil Ecol 168:104142

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  CAS  Google Scholar 

  • Nascimento FX, Brígido C, Glick BR, Rossi MJ (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron. 2016, Article ID 1369472.

  • Nayani S, Mayak S, Glick BR (1998) Effect of plant growth-promoting rhizobacteria on senescence of flower petals. Indian J Exp Biol 36:836–839

    Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol. 10, 1392.

  • Pandey S, Gupta S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17

    Article  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  Google Scholar 

  • Prasad PV, Djanaguiraman M (2014) Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct Plant Biol 41:1261–1269

    Article  CAS  Google Scholar 

  • Reed MLE, Warner BG, Glick BR (2005) Plant growth–promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    Article  CAS  Google Scholar 

  • Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, Del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:1–16

    Google Scholar 

  • Sairam RK, Tyagi A, Chinnusamy V (2016) Salinity tolerance: cellular mechanisms and gene regulation. In: Huang B (ed) Plant-environment interactions. CRC Press, pp 137–191

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Samson M, Słowińska S, Słowiński M, Lamentowicz M, Barabach J, Harenda K, Zielińska M, Robroek BJM, Jassey VEJ, Buttler A, Chojnicki BH (2018) The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in Northern Poland. Wetlands 38:551–563

    Article  Google Scholar 

  • Sandhya V, Ali S, Grover M, Kishore N, Venkateswarlu B (2009) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseeds Res 26:600–601

    Google Scholar 

  • Santoyo G, Strathern JN (2008) Non-homologous end joining is important for repair of Cr (VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 163:113–119

    Article  CAS  Google Scholar 

  • Santoyo G, Pacheco CH, Salmerón JH, León RH (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A Review Span J Agricul Res 15:13

    Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2019) ACC deaminase-producing bacteria: a key player in alleviating abiotic stresses in plants. Plant growth promoting Rhizobacteria for agricultural sustainability. Springer, Singapore, pp 267–291

    Chapter  Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheswari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 365–385

    Chapter  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012. Article ID 217037.

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterisation of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Siddique A, Kandpal G, Kumar P (2018) Proline accumulation and its defensive role under diverse stress condition in plants: an overview. J Pure Appl Microbiol 12:1655–1659

    Article  CAS  Google Scholar 

  • Singh SB, Gowtham HG, Murali M, Hariprasad P, Lakshmeesha TR, Murthy KN, Niranjana SR (2019) Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatal Agricul Biotechnol. 18 101089

  • Singh RP, Jha PN (2016) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake. Symbiosis 69:101–111

    Article  CAS  Google Scholar 

  • Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci. 8, 744

  • Tahir M, Ahmad I, Shahid M, Shah GM, Farooq ABU, Akram M, Zakir A (2019) Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf 178:33–42

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One 9:e96086

    Article  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma S, Hariprasad P (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 8:1–12

    Article  Google Scholar 

  • Tuma MBZDJ (2016) The efficiency of cadmium and zinc accumulation and influence on nutrient uptake and water stress in Brassica napus l. Comparat Euro Res 2016:116

    Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals-morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, Article ID 402647.

  • Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR (2016) The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int Microbiol 19:143–155

    CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integrat Plant Biol 60:796–804

    Article  CAS  Google Scholar 

  • Yao M, Ose T, Sugimoto H, Horiuchi A, Nakagawa A, Wakatsuki S, Tanaka I (2000) Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biol Chem 275:34557–34565

    Article  CAS  Google Scholar 

  • Yildrim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr 31:2059–2074

    Article  CAS  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9:343

    Article  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  Google Scholar 

  • Zainab N, Din BU, Javed MT, Afridi MS, Mukhtar T, Kamran MA, Chaudhary HJ (2020) Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol Biochem 152:90–99

    Article  CAS  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  Google Scholar 

  • Zhang X, Rong X, Cai M, Meng Q (2019) Collaborative pptimisation of emissions and abatement costs for air pollutants and greenhouse gases from the perspective of energy structure: An empirical analysis in Tianjin. Sustainability 11:3872

    Article  CAS  Google Scholar 

  • Zhao Z, Chen H, Li K, Du W, He S, Liu HW (2003) Reaction of 1-amino-2-methylenecyclopropane-1-carboxylate with 1-aminocyclopropane-1-carboxylate deaminase: analysis and mechanistic implications. Biochem 42:2089–2103

    Article  CAS  Google Scholar 

  • Zhou B, Yao W, Wang S, Wang X, Jiang T (2014) The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int J Mol Sci 15:10398–10409

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Gujarat Environmental Management Institute (GEMI), Govt. of Gujarat, Gandhinagar, under Research and Development proposals for researchers to NA (GEMI/726/1002/2017).

Author information

Authors and Affiliations

Authors

Contributions

NA: designed the study and edited final manuscript; SC: collected the data and wrote the manuscript.

Corresponding author

Correspondence to Natarajan Amaresan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandwani, S., Amaresan, N. Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. Environ Sci Pollut Res 29, 22843–22859 (2022). https://doi.org/10.1007/s11356-022-18745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18745-7

Keywords

Navigation