Skip to main content
Log in

Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present study demonstrates the metal toxicity ameliorating and growth promoting abilities of three different bacterial isolates when applied to rice as host plant. The three bacterial strains included a cadmium resistant Ochrobactrum sp., a lead resistant Bacillus sp. and an arsenic resistant Bacillus sp. designated as CdSP9, PbSP6, and AsSP9, respectively. When these isolates were used as inocula applied to metal-treated rice plants of variety Satabdi, the germination percentage, relative root elongation (RRE), amylase and protease activities were increased. The toxic effect of metal was reduced in presence of these bacteria. The overall biomass and root/shoot ratio were also enhanced by bacterial inoculation. Hydroponic studies showed that the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level, which had been increased in the presence of metal stress in rice roots, were lowered by the bacterial inoculation. In addition, all three strains were 1-aminocyclopropane-1-carboxylate (ACC) deaminase and catalase positive, whereas siderophore producing ability was lacking in PbSP6. However, both PbSP6 and AsSP9 were protease positive and could hydrolyse starch. The data indicate that these bacteria have promise for bioremediation as well as for plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amico, E.D., Cavalca, L., and Andreoni, V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem. 40, 74–84.

    Article  Google Scholar 

  • Baisak, R., Rana, D., Acharya, P.B.B., and Ka.r, M. 1994. Alterations in the activities of active oxygen scavenging enzymes of weat leaves subjected to water stress. Plant Cell Physiol. 35, 489–495.

    CAS  Google Scholar 

  • Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., and Glick, B.R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol. Biochem. 37, 241–250.

    Article  CAS  Google Scholar 

  • Bhattacharya, S. and Mukherjee, A.K. 2002. Salt stree-induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Sci. Technol. 30, 279–287.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64, 3663–3668.

    PubMed  CAS  Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S.Y. 1991. Injury of membrane lipid peroxidation to plant cell. Plant Physiol. Commun. 27, 84–90.

    CAS  Google Scholar 

  • Dell’Amico, E., Cavalca, L., and Andreoni, V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant potentially plant-growth promoting bacteria. FEMS Microbiol. Ecol. 52, 153–162.

    Article  PubMed  Google Scholar 

  • Dhindsa, R.H., Plumb-Dhindsa, P., and Thorpe, T.A. 1981. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J. Exp. Bot. 32, 93–101.

    Article  CAS  Google Scholar 

  • Doelman, P. 1985. Resistance of soil microbial communities to heavy metals, pp. 369–384. In Jensen, V., Kjoelles, A., and Soerensen, L.H. (wds.), Microbial Communities in Soil. Elsevier, London, UK.

    Google Scholar 

  • Downs, R.J. and Hellmers, H. 1975. Environment and Experimental Control of Plant Growth. Academic Press, New York, N.Y., USA.

    Google Scholar 

  • Faisal, M. and Hasnain, S. 2006. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus sp. on Vigna radiata plants. Lett. Appl. Microbiol. 43, 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Fick, G.N. and Qualset, C.O. 1975. Genetic control of endosperm amylase activity and gibberellic acid responses in standard-height and short-statured wheats. Proc. Nat. Acad. Sci. USA 72, 892–895.

    Article  PubMed  CAS  Google Scholar 

  • Gadd, G.M. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840.

    Article  CAS  Google Scholar 

  • Glick, B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Glick, B.R., Jacobson, C.B., Schwarze, M.M.K., and Pasternak, J.J. 1994. 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 40, 911–915.

    Article  CAS  Google Scholar 

  • Glick, B.R., Karaturovíc, D., and Newell, P. 1995. A novel procedure for rapid isolation of plant growth-promoting rhizobacteria. Can. J. Microbiol. 41, 533–536.

    Article  CAS  Google Scholar 

  • Glick, B.R., Penrose, D.M., and Li, J. 1998. A model for lowering of plant ethylene concentrations by plant-growth-promoting bacteria. J. Theor. Biol. 190, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Honma, M. and Shimomura, T. 1978. Metabolism of 1 aminocyclopropane-1-carboxylic acid. Agri. Biol. Chem. 42, 1825–1831.

    Article  CAS  Google Scholar 

  • Hu, X. and Boyer, G.L. 1996. Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol. 62, 4044–4048.

    PubMed  CAS  Google Scholar 

  • John, R., Ahmad, P., Gadgil, K., and Sarma, S. 2009. Heavy metal toxicity: Effect of plant growth, Biochemical parameters and metal accumulation by Brasica juncea, L. Int. J. Plant Prod. 3, 65–75.

    CAS  Google Scholar 

  • Kachout, S. Sai., Leclerc, J.C., BenMansoura, A., Rejeb, M.N., and Ouerghi, Z. 2009. Effect of heavy metals on growth and bioaccumulation of the annual halophytes Atriplex hortensis and A. rosea. J. Appl. Sci. Res. 5, 746–756.

    Google Scholar 

  • Kanekar, P.P., Nilegaonkar, S.S., Sarnaik, S.S., and Kelkar, A.S. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Biores. Technol. 85, 87–93.

    Article  CAS  Google Scholar 

  • Khan, M.A. and Faust, M.A. 1967. Effect of growth retardants on — amylase production in germinating barley seeds. Physiol. Plant 20, 673–681.

    Article  CAS  Google Scholar 

  • Li, J., Ovakim, D.H., Charles, T.C., and Glick, B.R. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes 419 root elongation. Curr. Microbiol. 41, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Pandey, S., Gupta, K., and Mukherjee, A.K. 2007. Impact of cadmium and lead on Catharanthus roseus — A phytoremediation study. Indian J. Environ. Biol. 28, 655–662.

    CAS  Google Scholar 

  • Pandey, S. and Maiti, T.K. 2008. Physicochemical and biological characterization of slag disposal site at Burnpur, West Bengal. Poll. Res. 27, 345–348.

    CAS  Google Scholar 

  • Pandey, S., Saha, P., Barai, P.K., and Maiti, T.K. 2010. Characterization of a Cd2+ — resistant strain of Ochrobactrum sp. isolated from slag disposal site of an iron and steel factory. Curr. Microbiol. 61, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, S., Saha, P., Biswas, S., and Maiti, T.K. 2011. Characterization of two heavy metal resistant Bacillus strains isolated from slag disposal site at Burnpur. Indian J. Environ. Biol. 32, 773–779.

    CAS  Google Scholar 

  • Pishchik, V.N., Vorobyev, N.I., Chernyaeva, I.I., Timofeeva, S.V., Kozhemyakov, A.P., Alexeev Y.V., and Lukin, S.M. 2002. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243, 173–186.

    Article  CAS  Google Scholar 

  • Reed, M.L.E. and Glick, B.R. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51, 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Schwyn, B. and Neilands, J. 1987. Universal assay for detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Snell, F.D. and Snell, C.T. 1971. Colorimetric methods of analysis, Vol. IV IAA, pp. 7–145. Van Nostrand Reinold Co., New York, USA.

    Google Scholar 

  • Tripathi, A.K., Verma, S.C., and Ron, E.Z. 2002. Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res. Microbiol. 153, 579–584.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.H., Wood, T.K., Mulchandani, A., and Chen, W. 2006. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol. 72, 1129–1134.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi, S., Usmani, S., Singh, B.R., and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64, 991–997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Ghosh, P.K., Ghosh, S. et al. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol. 51, 11–17 (2013). https://doi.org/10.1007/s12275-013-2330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2330-7

Keywords

Navigation