Skip to main content
Log in

Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We reported previously that the plant oncogene rolD anticipates and stimulates flowering in Nicotiana tabacum, and encodes ornithine cyclodeaminase, an enzyme catalysing the conversion of ornithine to proline. To investigate on the possible role of proline in flowering, we altered the expression of AtP5CS1, encoding the rate-limiting enzyme of proline biosynthesis in plants. Accordingly we characterized a mutant line containing a T-DNA insertion into AtP5CS1 and introduced in Arabidopsis thaliana AtP5CS1 under the control of the CaMV35S promoter. As expected homozygous p5cs1 mutants behaved as late flowering. In addition p5cs1 mutants exhibited a shorter size and contained lower levels of proline, compared to wild type. 35S-P5CS1 plants, manifested, early in development, overexpression of P5CS1 and accumulation of proline, leading to early flowering, both under long- and short-day conditions. Later in development, down-regulation of P5CS1 occurred in 35S-P5CS1 leaves, leading to proline reduction, and, in turn, impaired bolting and stunted growth. Salt-stress restored expression of P5CS1 and proline accumulation in P5CS1-transformed plants, as well as rescuing growth. Our data suggest that proline plays a key role in flower transition, bolting and coflorescence formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAM:

Shoot apical meristem

DAG:

Days after germination

ABA:

Abscisic acid

References

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt sress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  • An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    Article  PubMed  CAS  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of Arabidopsis thaliana plants. CR Acad Sci Paris 316:1194–1199

    CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petijean A, LeJeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372:555–566

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Versules PE, Sunkar R, Zhu J-K (2005) Endogenous siRNA derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Chiang HH, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana during development and in response to dessication. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Delanauney AJ, Verma DPS (1993) Proline biosynthesis and degradation in plants. Plant J 4:215–223

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Fafournoux P, Bruhat A, Jousse C (2000) Amino acid regulation of gene expression. Biochem J 351:1–12

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Andre B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hellmann H, Funk D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant towards exogenous proline application. Plant Physiol 123:779–790

    Article  PubMed  CAS  Google Scholar 

  • Hu CAA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme Δ1-pyrroline-5-carboxylate synthetase catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy P, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • King RW, Zeevaart JAD (1973) Floral stimulus movement in Perilla and flower inhibition caused by non-induced leaves. Plant Physiol 51:727–738

    PubMed  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Koornnef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  Google Scholar 

  • Lang A, Chailakhyan MK, Frolova IA (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day and a long-day plant. Proc Natl Acad Sci USA 74:2412–2416

    Article  PubMed  Google Scholar 

  • Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  PubMed  CAS  Google Scholar 

  • Mansour M (1998) Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    Article  CAS  Google Scholar 

  • Mauro ML, Trovato M, De Paolis A, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Article  PubMed  CAS  Google Scholar 

  • Mathieu J, Warthmann N, Küttner F, Schmid N (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999a) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999b) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Nogushi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  Google Scholar 

  • Peng Z, Lu Q, Verma DP (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  • Redei GP (1962) Supervital mutants in Arabidopsis. Genetics 47:443–460

    PubMed  CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer S, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Jaoua S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N (1995) Isolation and characterization, and chromosomal location of a gene encoding the Δ1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J (2005) A gene expression map of Arabidopsis development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Schwache R, Grallath S, Breitkreuz KE, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–391

    Article  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:85–89

    Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Swain SM, Olszewski NE (1996) Genetic analysis of gibberellin signal transduction. Plant Physiol 112:11–17

    PubMed  CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci USA 98:13449–13453

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Villaroel R, May M, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hua X-J, May M, Van Montagu M (1995) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci USA 93:8787–8791

    Article  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Bush W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of 1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Comm 261:766–772

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD (1976) Physiology of flower formation. Ann Rev Plant Physiol 27:321–348

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nathalie Verbruggen of the University of Bruxelles, and Dr Chris Genetello of the University of Ghent, for kindly providing the cDNA of AtP5CS1. This work was partially supported by grants from MIUR (FIRB, PRIN, Centro di Eccellenza in Biologia e Medicina Molecolare) and a grant from Università La Sapienza (Progetto di Ateneo to MMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Trovato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattioli, R., Marchese, D., D’Angeli, S. et al. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66, 277–288 (2008). https://doi.org/10.1007/s11103-007-9269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9269-1

Keywords

Navigation