Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N2 than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alazard D (1985) Stem and root nodulation in Aeschynomene spp. Appl Environ Microbiol 50:732–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Lopez M (1990) Ecology of Pterocarpus officinalis forested wetlands in Puerto Rico. In: Lugo AE, Brinson M, Brown S (eds) Ecosystems in the world 15 forested wetlands. Elsevier, Amsterdam, pp 251–265

    Google Scholar 

  • Bâ AM, Samba R, Sylla SN, Le Roux C, Neyra M, Rousteau A, Imbert D, Toribio A (2004) Caractérisation de la diversité des microorganismes symbiotiques de Pterocarpus officinalis dans des forêts marécageuses de Guadeloupe et de Martinique. Rev Ecol 59:163–170

    Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Barrios E, Herrera R (1993) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen, mineralization and nitrification. J Trop Ecol 10:399–416

    Article  Google Scholar 

  • Bohrer EK, Friese CF, Amon JP (2004) Seasonal dynamic of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  PubMed  Google Scholar 

  • Brown AM, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Article  Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1985) A developmental study of the early stages in vesicular–arbuscular mycorrhizal formation. Can J Bot 63:184–194

    Article  Google Scholar 

  • Carter JL, Colmer TD, Veneklaas EJ (2005) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–134

    Article  Google Scholar 

  • Carvalho LM, Correia PM, Caçador I, Martins-Louçao A (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143

    Article  Google Scholar 

  • Carvalho LM, Correia PM, Martins-Louçao A (2004) Arbuscular mycorrhizal fungal propagules in a salt mash. Mycorrhiza 14:165–170

    Article  PubMed  Google Scholar 

  • Corby HDL (1988) Types of rhizobial nodules and their distribution among the Leguminosae. Kirkia 13:53–123

    Google Scholar 

  • Crawford RMM (1982) Physiological responses to flooding. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III, water relations and carbon assimilation, vol. 12B. Springer, Berlin Heidelberg New York, pp 455–477

    Google Scholar 

  • Diabaté M, Munive A, De Faria SM, Bâ AM, Dreyfus B, Galiana A (2004) Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. New Phytol 166:231–239

    Article  Google Scholar 

  • Dommergues Y, Duhoux E, Diem HG (1999) Les arbres fixateurs d’azote, 34th edn. Espaces, Paris, p 499

    Google Scholar 

  • Dreyfus B, Dommergues Y (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317

    Article  CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Eusse AM, Aide TM (1999) Patterns of litter production across a salinity gradient in a Pterocarpus officinalis tropical wetland. Plant Ecol 145:307–315

    Article  Google Scholar 

  • Gagnon J, Haycock KA, Roth JM, Feldman DS, Finzer WF (1989) Abacus Concepts, SuperAnova: Les Modèles Linéaires Généralisés. Abacus Concepts, Berkeley, CA, USA

  • Gomes ARS, Kozlowski TT (1980) Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol 66:267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goormachtig S, Capoen W, Holsters M (2004) Rhizobium infection : lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 11:518–522

    Article  Google Scholar 

  • Graham JH, Drouillard DL, Hodge NC (1996) Carbon economy of sour orange in response to different Glomus spp. Tree Physiol 16:1023–1029

    Article  PubMed  Google Scholar 

  • Hartmond U, Schaesberg NV, Graham JH, Syvertsen JP (1987) Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil 104:37–43

    Article  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communications, no. 22, 2nd revised edn. Commonwealth Agricultural Bureau, London

  • Imbert D, Bonhême I, Saur E, Bouchon C (2000) Floristics and structure of the Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. J Trop Ecol 16:55–68

    Article  Google Scholar 

  • James EK, Sprent JI, Sutherland JM, McInroy SG, Minchin FR (1992) The structure of nitrogen fixing root nodules on the aquatic mimosoid legume Neptunia plena. Ann Bot 69:173–180

    Article  Google Scholar 

  • James EK, de Fatima Loureiro M, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbiosis from the Brazilian Pantanal. New Phytol 150:723–738

    Article  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc 25:148–157

    CAS  Google Scholar 

  • Loureiro MF, De Faria SM, James EK, Pott A, Franco AA (1994) Nitrogen-fixing stem nodules of the legume, Discolobium pulchellum Benth. New Phytol 128:283–295

    Article  CAS  Google Scholar 

  • Loureiro MF, James EK, Sprent JI, Franco AA (1995) Stem and root nodules on the tropical wetland legume, Aeschynomene fluminensis. New Phytol 130:531–544

    Article  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semi-aquatic grass species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Moreira FMS, Freitas Da Silva M, De Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570

    Article  Google Scholar 

  • Muller F, Vaillant A, Bâ AM, Bouvet JM (2006) Isolation and characterization of microsatellite markers in Pterocarpus officinalis Jacq. Mol Ecol Notes 6:462–464

    Article  CAS  Google Scholar 

  • Muok BO, Ishii T (2006) Effect of arbuscular mycorrhizal fungi on tree growth and nutrient uptake of Sclerocarya birrea under water stress, salt stress and flooding. J Jpn Soc Hortic Sci 75:26–31

    Article  CAS  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martin-Louçao MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Novozamsky VJG, Huba R, Van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–249

    Article  CAS  Google Scholar 

  • Osundina MA (1998) Nodulation and growth of mycorrhizal Casuarina equisetifolia J.R. and G. First in response to flooding. Biol Fertil Soils 26:95–99

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plenchette C, Declerck S, Diop T, Strullu DG (1996) Infectivity of monoaxenic subcultures of the AM fungus Glomus versiforme associated with Ri-TDNA transformed root. Appl Microbiol Biotechnol 46:545–548

    Article  CAS  Google Scholar 

  • Roggy JC, Prévost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rainforest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Roggy JC, Prévost MF, Gourbiere F, Casabianca H, Garbaye J, Domenach AM (1999b) Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer in a rain-forest of French Guiana. Oecologia 120:171–182

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295

    Article  Google Scholar 

  • Saint-Etienne S, Paul S, Imbert D, Dulormne M, Muller F, Toribio A, Plenchette C, Bâ AM (2006) Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For Ecol Manag 232:86–89

    Article  Google Scholar 

  • Sanchez-Diaz M, Pardo M, Antolin M, Pena J, Aguirreolea J (1990) Effect of water stress on photosynthetic activity in the MedicagoRhizobiumGlomus symbiosis. Plant Sci 71:215–221

    Article  Google Scholar 

  • Saur E, Bonhême I, Nygren P, Imbert D (1998) Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe. J Trop Ecol 14:761–770

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London, UK

    Google Scholar 

  • Stevens KJ, Spender SW, Peterson RL (2002) Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza 12:277–283

    Article  CAS  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria, vol. 15. Blackwell, Oxford, UK

    Google Scholar 

  • Walter CA, Bien A (1989) Aerial root nodules in the tropical legume, Pentaclethra macroloba. Oecologia 80:27–31

    Article  CAS  PubMed  Google Scholar 

  • Wigand C, Stevenson JC (1997) Facilitation of phosphate assimilation by aquatic mycorrhizae of Vallisneria americana Michx. Hydrobiologia 342:35–41

    Article  Google Scholar 

Download references

Acknowledgements

We thank the AUF (grant no. 04.234), the GIS ECOFOR, and the Ministère de l’Ecologie et du Développement Durable (grant no. 020000118) for their financial support. This work was supported by a doctoral grant from the Guadeloupe region to F. M. We thank Dr. Marc Chillet (CIRAD, Guadeloupe) for providing access to gas chromatography facilities and Josely Lacroix for improving the English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bâ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fougnies, L., Renciot, S., Muller, F. et al. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17, 159–166 (2007). https://doi.org/10.1007/s00572-006-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0085-2

Keywords

Navigation