Skip to main content
Log in

Lipid transfer proteins: structure, classification and prospects of genetic engineering for improved disease resistance in plants

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant non-specific lipid transfer proteins (nsLTPs) are small, basic, and cysteine-rich proteins found abundantly in higher plants. Apart from main processes like the membrane stabilization, cell wall organization, cuticle synthesis, plant growth and development, and signal transduction, nsLTPs have an active role in abiotic and biotic stress tolerance. Their structure consists of a conserved motif with eight-cysteine residues, stabilized by four disulfide bonds that make an inner hydrophobic cavity for ligand binding. This structural conformation renders stability and means for the transport of a variety of hydrophobic molecules. The nsLTPs possess significant inhibitory activity against the pathogenic microorganisms and thus make a part of the immunity in the plant’s defense system. Due to their small size, LTPs penetrate the fungal and bacterial membrane, creating pores that cause the efflux of the intracellular ions and eventually the cell death. Several genes encoding LTPs with antimicrobial potential have been integrated and overexpressed in plants either alone or in combination with other peptides for improved disease resistance. This review summarizes nsLTPs, their structural characteristics, and expression in various plant species to combat phytopathogens with enhanced disease resistance.

Key message

The development of classification system for nsLTPs, isolated from different plant species with their identified role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2

Similar content being viewed by others

Data availability

The relevant research articles were reviewed for this article.

Code availability

NA.

Abbreviations

ns-LTPs:

Nonspecific-lipid transfer proteins

AMPs:

Antimicrobial peptides

8CM:

Eight cysteine motif

PR:

Pathogenesis-related

3D:

Three dimensional

GPI:

Glycosylphosphatidylinositol-anchor

References

  • Abdelkader AB, Mazliak P (1970) Lipid exchange between mitochondria, microsomes and cytoplasmic supernatant of potato or cauliflower cells. Eur J Biochem 15:250–262

    CAS  PubMed  Google Scholar 

  • Akhiyarova GR, Finkina EI, Ovchinnikova TV, Veselov DS, Kudoyarova GR (2019) Role of pea LTPs and abscisic acid in salt-stressed roots. Biomolecules 10(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MA, Abbas A, Azeem F, Shahzadi M, Bohlmann H (2020) The Arabidopsis GPI-anchored LTPg5 encoded by At3g22600 has a role in resistance against a diverse range of pathogens. Int J Mol Sci 21(5):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador VC, Santos-Silva CAD, Vilela LMB, Oliveira-Lima M, de Santana RM, Roldan-ilho RS, Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM (2021) Lipid transfer proteins (LTPs)-structure, diversity and roles beyond antimicrobial activity. Antibiotics (basel) 10(11):1281

    Article  CAS  PubMed  Google Scholar 

  • Bard GCV, Zottich U, Souza TAM, Ribeiro SFF, Dias GB, Pireda S, Da Cunha M, Rodrigues R, Pereira LS, Machado OLT, Carvalho AO, Gomes VM (2016) Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds. Genet Mol Res. https://doi.org/10.4238/gmr15048859

    Article  PubMed  Google Scholar 

  • Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7(7):293–296

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (2000) Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51(353):1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov IV, Shenkarev ZO, Finkina EI, Daria NM, Eugene IR, Alexander SA, Tatiana VO (2016) A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC Plant Biol 16:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutrot F, Guirao A, Alary R, Joudrier P, Gautier MF (2005) Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim Biophys Acta 1730(2):114–125

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhot N, Gomès E, Milat ML, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thévenot P, Blein JP (2004) Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell 15(11):5047–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caaveiro JMM, Molina A, González-Mañas JM, Rodríguez-Palenzuela P, García-Olmedo F, Goñi FM (1997) Differential effect of five types of antipathogenic plant peptides on model membranes. FEBS Lett 410:338–342

    Article  CAS  PubMed  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Broekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109(2):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho Ade O, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—A concise review. Peptides 28(5):1144–1153

    Article  PubMed  Google Scholar 

  • Chanda B, Xia Y, Mandal M, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    Article  CAS  PubMed  Google Scholar 

  • Cheng CS, Chen MN, Lai YT, Chen T, Lin KF, Liu YJ, Lyu PC (2008) Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins: Struct Funct Genet 70(3):695–706

    Article  CAS  PubMed  Google Scholar 

  • Cruz LP, Ribeiro SF, Carvalho AO, Vasconcelos IM, Rodrigues R, Cunha MD, Gomes VM (2010) Isolation and partial characterization of a novel lipid transfer protein (LTP) and antifungal activity of peptides from chilli pepper seeds. Protein Pept Lett 17(3):311–318

    Article  CAS  PubMed  Google Scholar 

  • Cuevas-Zuviría B, Garrido-Arandia M, Díaz-Perales A, Pacios LF (2019) Energy landscapes of ligand motion inside the Tunnel-like cavity of lipid transfer proteins: the case of the Prup 3 allergen. Int J Mol Sci 20(6):1432

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Agostino N, Buonanno M, Ayoub J et al (2019) Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep 9:1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, Mueller TD (2016) The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls. Plant Physiol 172:1911–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OL, Gomes VM (2011) Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant 142(3):233–246

    Article  CAS  PubMed  Google Scholar 

  • Duo J, Xiong H, Wu X, Li Y, Si J, Zhang C, Duan R (2021) Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues. BMC Genomics 22(1):674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douliez JP, Pato C, Rabesona H, Mollé D, Marion D (2001) Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem 268:1400–1403

    Article  CAS  PubMed  Google Scholar 

  • Dong OX, Ronald PC (2019) Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180(1):26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4:947–964

    Article  CAS  PubMed  Google Scholar 

  • Edstam MM, Laurila M, Höglund A, Raman A, Dahlström KM, Salminen TA, Edqvist J, Blomqvist K (2014) Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol Biochem 75:55–69

    Article  CAS  PubMed  Google Scholar 

  • Edqvist J, Blomqvist K, Nieuwland J, Salminen TA (2018) Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 59(8):1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlberg P, Buhot N, Johansson ON, Andersson MX (2019) Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana. Mol Plant Pathol 20(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Du K, Gao Y, Kong Y, Chu C, Sokolov V, Wang Y (2013) Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Genetika 49(4):439–447

    CAS  PubMed  Google Scholar 

  • Fang Z, He Y, Liu Y, Jiang W, Song J, Wang S, Yin J (2020) Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J Integr Agric 19(5):1170–1185

    Article  CAS  Google Scholar 

  • Finkina EI, Balandin SV, Serebryakova MV, Potapenko NA, Tagaev AA, Ovchinnikova TV (2007) Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens culinaris) seeds. Biochemistry (mosc) 72(4):430–438

    Article  CAS  PubMed  Google Scholar 

  • Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2016) Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nat 8(2):47–61

    Article  CAS  Google Scholar 

  • Fleury C, Gracy J, Gautier M, Pons J, Dufayard J, Labesse G, Ruiz M, de Lamotte F (2019) Comprehensive classification of the plant non-specific lipid transfer protein superfamily towards its Sequence–Structure–Function analysis. Peer J 7:e27687

    Article  Google Scholar 

  • García-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3(2):72–74

    Article  PubMed  Google Scholar 

  • Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci 7:1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge X, Chen J, Sun C, Ca K (2003) Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Prot Eng 16(6):387–390

    Article  CAS  Google Scholar 

  • Gizatullina AK, Finkina EI, Mineev KS, Melnikova DN, Bogdanov IV, Telezhinskaya IN, Balandin SV, Shenkarev ZO, Arseniev AS, Ovchinnikova TV (2013) Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris. Biochim Biophys Res Commun 439(4):427–432

    Article  CAS  Google Scholar 

  • Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC (2017) Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 18(1):533

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiderdoni E, Cordero MJ, Vignols F, Garcia-Garrido JM, Lescot M, Tharreau D, Meynard D, Ferriere N, Notteghem JL, Delseny M (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol Biol 49:683–699

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Ge X, Ma H (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol 82:239–253

    Article  CAS  PubMed  Google Scholar 

  • Hsouna AB, Saad RB, Dhifi W, Mnif W, Brini F (2021) Novel non-specific lipid-transfer protein (TdLTP4) isolated from durum wheat: antimicrobial activities and anti-inflammatory properties in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Microb Pathog 154:104869

    Article  PubMed  Google Scholar 

  • Huang Y, Liu H, Jia Z, Fang Q, Luo K (2012) Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol 32(10):1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Khan RS, Shehryar K, Imran AF, Attia S, Shah S, Mii M (2019) Antimicrobial peptides as effective tools for enhanced disease resistance in plants. PCTOC 139:1–15

    Article  CAS  Google Scholar 

  • Jacq A, Pernot C, Martinez Y, Domergue F, Payré B, Jamet E, Burlat V, Pacquit VB (2017) The Arabidopsis lipid transfer protein 2 (AtLTP2) is involved in cuticle-cell wall interface integrity and in etiolated hypocotyl permeability. Front Plant Sci 8:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain A, Salunke DM (2017) Crystal structure of nonspecific lipid transfer protein from Solanummelongena. Proteins 85(10):1820–1830

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26(9):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Chattoo BB (2009) Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice 2:143–154

    Article  Google Scholar 

  • Ji J, Lv H, Yang L, Fang Z, Zhuang M, Zhang Y, Liu Y, Li Z (2018) Genome-wide identification and characterization of non-specific lipid transfer proteins in cabbage. Peer J 6:e5379

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30(12):1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Fu X, Wen M, Wan F, Tang Q, Tian Q, Luo K (2013) Overexpression of an nsLTPs-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Physiol Mol Plant Pathol 82:81–87

    Article  CAS  Google Scholar 

  • Jülke S, Ludwig-Müller J (2015) Response of Arabidopsis thaliana roots with altered lipid transfer protein (LTP) gene expression to the clubroot disease and salt stress. Plants 5(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung H, Kim K, Hwang B (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221(3):361–373

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochem Biophys Acta 380:31–44

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139:411–416

    Article  CAS  PubMed  Google Scholar 

  • Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone-specific gene encoding a putative 7-kDa lipid transfer protein confers aleuronecellspecific expression in transgenic rice. Plant J 6:849–860

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Nishihara M, Yamamur S, Nakamura I, Mii M (2006) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotech 23(2):179–183

    Article  Google Scholar 

  • Khan RS, Thirukkumaran G, Nakamura I, Mii M (2010) Rol (root loci) gene as a positive election marker to produce marker-free Petunia hybrida. PCTOC 101(3):279–285

    Article  CAS  Google Scholar 

  • Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011a) Production of marker-free disease-resistant potato using isopentenyltransferase gene as a positive selection marker. Plant Cell Rep 30(4):587–597

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Alam SS, Munir I, Azadi P, Nakamura I, Mii M (2011b) Botrytis cinerea-resistant marker-free Petunia hybrida produced using the MAT vector system. PCTOC 106:11–20

    Article  Google Scholar 

  • Khan RS, Darwish NA, Khattak B, Ntui V, Kong K, Shimomae K, Nakamura I, Mii M (2014) Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding Chitinase and Wasabi defensin genes. Mol Biotechnol 56:814–823

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Mii M (2019) Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9(5):192

    Article  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A (2012) The Arabidopsis nitrate Transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24(1):245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kirubakaren SI, Begum SM, Ulganathan K, Sakthivel N (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem 46:918–927

    Article  Google Scholar 

  • König K, Vaseghi MJ, Dreyer A, Dietz KJ (2018) The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. Physiol Plant 162:262–273

    Article  PubMed  Google Scholar 

  • Kristensen AK, Brunstedt J, Nielsen KK, Roepstorff P, Mikkelsen JD (2000) Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci 155:31–40

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh M (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticularlipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XB, Yang XY, Li MD, Guo SH, Pei Y (2007) Enhancing disease resistance in transgenic tomato over-expressing antimicrobial proteins, LjAMP1 and LjAMP2 from motherwort seeds. Acta Phytophylacica Sin 34:354

    CAS  Google Scholar 

  • Li J, Gao G, Xu K, Chen B, Yan G, Li F, Qiao J, Zhang T, Wu X (2014) Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS ONE 9:e84556

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Ma H (2019) Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 20(1):375

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan K, Guo X, Liu J, Zhang K, Lu P (2022a) Genome-wide identification, molecular evolution and expression analysis of the non-specific lipid transfer protein (nsLTP) family in Setaria italica. BMC Plant Biol 22:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ (2022b) Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. Front Plant Sci 13:1014266

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin KF, Liu YN, Hsu STD, Samuel D, Cheng CS, Bonvin AM, Lyu PC (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44(15):5703–5712

    Article  CAS  PubMed  Google Scholar 

  • Lin P, Xia L, Ng TB (2007) First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species. Peptides 28(8):1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Huang D, Liu K, Hu S, Yu J, Gao G, Song S (2010) Discovery, identification and comparative analysis of non-specific lipid transfer protein (nsLtp) family in Solanaceae. Genomics Proteom Bioinform 8(4):229–237

    Article  CAS  Google Scholar 

  • Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Wu G (2014) BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS ONE 9(10):e110272

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66(19):5663–5681

    Article  CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  CAS  PubMed  Google Scholar 

  • Melnikova DN, Finkina EI, Bogdanov IV, Ovchinnikova TV (2018) Plant pathogenesis-related proteins binding lipids and other hydrophobic ligands. Russ J Bioorg Chem 44(6):586–594

    Article  CAS  Google Scholar 

  • Meng C, Yan Y, Liu Z, Chen L, ZhangY LX, Ma Z (2018) Systematic analysis of cotton non-specific lipid transfer protein family revealed a special group that is involved in fiber elongation. Front Plant Sci 9:1285

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaughlin JE, Al Darwish N, Garcia-Sanchez J, Tyagi N, Trick HN, McCormick S, Tumer NE (2021) A lipid transfer protein has antifungal and antioxidant activity and suppresses Fusarium head blight disease and DON accumulation in transgenic wheat. Phytopathology 111:671–683

    Article  CAS  PubMed  Google Scholar 

  • Missaoui K, Gonzalez-Klein Z, Jemli S, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J et al (2022) Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS ONE 17(4):e0266971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina A, García-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Segura A, García-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316(2):119–122

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Diaz I, Vasil IK, Carbonero P, Garcia-Olmedo F (1996) Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol Gen Genet 252:162–168

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1996) New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins. Plant Mol Biol 31(3):539–552

    Article  CAS  PubMed  Google Scholar 

  • Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilber CWS, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59(3):181–196

    Article  CAS  Google Scholar 

  • Ng TB, Cheung RCF, Wong JH, Ye X (2012) Lipid-transfer proteins. Biopolymers 98(4):268–279

    Article  CAS  PubMed  Google Scholar 

  • Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I et al (2011) Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231

    Article  CAS  Google Scholar 

  • Odintsova TI, Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Shcherbakova LA, Kudryavtsev AM (2019) Non-specific lipid transfer proteins in Triticum kiharae Dorof. etMigush.: identification, characterization and expression profiling in response to pathogens and resistance inducers. Pathogens 8(4):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owayss AA, Elbanna K, Iqbal J, Abulreesh HH, Organji SR, Raweh HS, Alqarni AS (2020) In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina-christi L. and Acacia gerrardii Benth. trees. Food Sci Nutr 8(1):390–401

    Article  CAS  PubMed  Google Scholar 

  • Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breeding 17:159–171

    Article  CAS  Google Scholar 

  • Peretti D, Kim S, Tufi R, Lev S (2020) Lipid transfer proteins and membrane contact sites in human cancer. Front Cell Dev Biol 7:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Regente MC, Giudici AM, Villalain J, Canal L (2005) The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol 40(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Roy-Barman S, Sautter C, Chatto BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Trans Res 15:435–446

    Article  CAS  Google Scholar 

  • Rogozhin EA, Odintsova TI, Musolyamov A, Smirnov AN, Babakov AV, Egorov TA, Grishin EV (2009) Purification and characterization of a novel lipid transfer protein from caryopsis of barnyard Grass (Echinochlo acrusgalli). Appl Biochem Microbiol 45:363–368

    Article  CAS  Google Scholar 

  • Safi H, Saibi W, Alaoui MM, HmyeneA MK, Hanin M, Brini F (2015) A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiol Biochem 89:64–75

    Article  CAS  PubMed  Google Scholar 

  • Salcedo G, Sanchez-Monge R, Barber D, Diaz-Perales A (2007) Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta Mol Cell Biol Lipids 1771:781–791

    Article  CAS  Google Scholar 

  • Salminen TA, Blomqvist K, Edqvist J (2016) Lipid transfer proteins: classification, nomenclature, structure, and function. Planta 244:971–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel D, Liu YJ, Cheng CS, Lyu PC (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277(38):35267–35273

    Article  CAS  PubMed  Google Scholar 

  • Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep 28(3):419–427

    Article  CAS  PubMed  Google Scholar 

  • Schmitt AJ, Sathoff AE, HollC BB, Samac DA, Carter CJ (2018) The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. J Exp Bot 69(22):5587–5597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt A, Roy R, Carter CJ (2021) Nectar antimicrobial compounds and their potential effects on pollinators. Curr Opin Insect Sci 44:55–63

  • Segura A, Moreno M, García-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332(3):243–246

    Article  CAS  PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehryar K, Khan RS, Iqbal A, Hussain SA, Imdad S, Bibi A, Hamayun L, Nakamura I (2020) Transgene stacking as effective tool for enhanced disease resistance in plants. Mol Biotechnol 62(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant-Microbe Interact 21:346–360

    Article  CAS  PubMed  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37(11):3623–3637

    Article  CAS  PubMed  Google Scholar 

  • Tassin-Moindrot S, Caille A, Douliez JP, Marion D, Vovelle F (2000) The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur J Biochem 267:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) Seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnolle C, Arondel V, Jolliot A, Kader JC (1992) Phospholipid transfer proteins from higher plants. In: Dennis EA, Vance EE (eds) Methods in enzymology. Elsevier, Amsterdam, pp 522–530

    Google Scholar 

  • Wang SY, Wu JH, Ng T, Ye XY, Rao PF (2004) A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Hwang SG, Karuppanapandian T, Liu A, Kim W, Jang CS (2012) Insight into the molecular evolution of non-specific lipid transfer proteins via comparative analysis between rice and sorghum. DNA Res 19:179–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Q, Cheng C, Zhang K, Lou Q, Li J, Chen J (2020) Genome-wide analysis of putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome 63(4):225–238

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Gao H, Chu Z, Ji C, Xu Y, Cao W, Zhou S, Song Y, Liu H, Zhu C (2021) A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato. Mol Plant Pathol 22(1):48–63

    Article  PubMed  Google Scholar 

  • Wei K, Zhong X (2014) Non-specific lipid transfer proteins in maize. BMC Plant Biol 14:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zheng X, Song Y et al (2018a) NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 8:8873

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F, Zhu C (2018b) NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 8:8873

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Zhang C, Shan R, Li X, Tseke Inkabanga A, Li L, Jiang H, Chai Y (2022) Genome-wide identification and expression analysis of nsLTP gene family in rapeseed (Brassica napus) reveals their critical roles in biotic and abiotic stress responses. Int J Mol Sci 23(15):8372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Xiao Y, Pei Y, Zhen C (2005) LJAFP, a novel non-specific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicus) confers disease resistance against phytopathogenic fungi and bacterium in transgenic tobacco. Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases

  • Yang X, Li J, Li X, She R, Pei Y (2006) Isolation and characterization of a novel thermostable non-specific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicas Houtt) seeds. Peptides 27(12):3122–3128

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xiao Y, Wang X, Pei Y (2007) Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 73(3):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang X, Li X, Zhang B, Xiao Y, Li D, Pei Y (2008) Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). Plant Cell Rep 27(4):759–766

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li P, Liu C, Wang P, Cao P, Ye X, Li Q (2022) Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses. Plant Physiol Biochem 172:33–47

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17(2):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Kato K, Koba A et al (2008) Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides 29(12):2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Hou W, Du X, Wang L, Wu H, Zhao L, Kong L, Wang H (2014) Identification of wheat non-specific lipid transfer proteins involved in chilling tolerance. Plant Cell Rep 33(10):1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Kim Y, Zong J, Lin H, Dievart A, Li H, Liang W (2019) Genome-wide analysis of the barley non-specific lipid transfer protein gene family. Crop J 7(1):65–76

    Article  CAS  Google Scholar 

  • Zhu X, Li Z, Xu H, Zhou M, Du L, Zhang Z (2012) Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genomics 12(3):481–488

    Article  CAS  PubMed  Google Scholar 

  • Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NC, Santos IS, do Nacimento VV, Miguel EC, Machado OL, Gomes VM (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta Gen Subj 11810(4):375–383

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331128DSR51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Ethics declarations

Conflict of interest

All the authors of this article have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

NA.

Consent for publication

All the authors have their own contribution in writing of this review article.

Additional information

Communicated by Jochen Kumlehn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Khan, R.S., Shah, D.A. et al. Lipid transfer proteins: structure, classification and prospects of genetic engineering for improved disease resistance in plants. Plant Cell Tiss Organ Cult 153, 3–17 (2023). https://doi.org/10.1007/s11240-023-02445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02445-2

Keywords

Navigation