Skip to main content
Log in

Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Article  CAS  Google Scholar 

  • Anand A, Trick HN, Gill BS, Muthukrishnan S (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J 1:241–251

    Article  CAS  PubMed  Google Scholar 

  • Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    Article  PubMed  CAS  Google Scholar 

  • Bi Y, Cammue BPA, Goodwin PH, KrishnaRaj S, Saxena PK (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Bieri S, Potrykus I, Fuetterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763

    Article  CAS  Google Scholar 

  • Bieri S, Potrykus I, Fuetterer J (2003) Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Mol Breed 11:37–48

    Article  CAS  Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Fuetterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    Article  CAS  Google Scholar 

  • Bourdon V, Wickham A, Lonsdale D, Harwood W (2004) Additional introns inserted within the luciferase gene stabilise transgene expression in wheat. Plant Sci 167:1143–1149

    Article  CAS  Google Scholar 

  • Buhot N, Douliez J-P, Jacquemard A, Marion D, Tran V, Maume BF, Milat M-L, Ponchet M, Mikes V, Kader J-C, Blein J-P (2001) A lipid transfer protein binds to a receptor involved in the control of plant defense responses. FEBS Lett 509:27–30

    Article  PubMed  CAS  Google Scholar 

  • Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Damme JV, Osborn RW, Guerbette F, Kader JC (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  PubMed  CAS  Google Scholar 

  • Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu DJ, Gill BS (1998) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as selectable marker. Theor Appl Genet 97:1296–1306

    Article  CAS  Google Scholar 

  • Chugh A, Khurana P (2003) Herbicide-resistant transgenics of bread wheat (T. aestivum) and emmer wheat (T. dicoccum) by particle bombardment and Agrobacterium-mediated approaches. Curr Sci 84:78–83

    CAS  Google Scholar 

  • Clausen M, Krauter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of virally encoded gene in transgenic wheat. Nature Biotechnol 18:446–449

    Article  CAS  Google Scholar 

  • Cooley J, Ford T, Christou P (1995) Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Theor Appl Genet 90:97–104

    Article  CAS  Google Scholar 

  • De Block M, Debbrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22

    CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Chen J, Sun C, Cao K (2003) Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Prot Engg 16:387–390

    Article  CAS  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel K-H, Oostendrop M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiodiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Induced resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Jach G, Gornhard B, Mundy J, Logeman J, Pinsdrof E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Kader J-C (1997) Lipid transfer proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004) Controlled salicylic acid levels and corresponding signalling mechanisms in plants. Plant Biotechnol 21:319–335

    CAS  Google Scholar 

  • Kramer C, Dimaio J, Carfswell GK, Shillito RD (1993) Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458

    Article  CAS  Google Scholar 

  • Li WL, Faris JD, Muthukrishnan S, Lin DJ, Chen PD, Gill BS (2001) Isolation and characterization of novel cDNA clones of acidic chitinase and β-1, 3-glucanase from wheat spikes infected by Fusarium graminearum. Theor Appl Genet 102:353–362

    Article  CAS  Google Scholar 

  • Li X, Gasic K, Cammue BPA, Broekaert WF, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  PubMed  CAS  Google Scholar 

  • Limpert E, Felsenstein FG, Andrivon D (1987) Analysis of virulence in populations of wheat powdery mildew in Europe. J Phytopathol 120:1–8

    Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CL, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Diaz I, Vasil IK, Carbonero P, Garcia-Olmedo F (1996) Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol Gen Genet 252:162–168

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297

    Article  CAS  Google Scholar 

  • Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microb Interact 14:832–838

    CAS  Google Scholar 

  • Parrott D, Anderson AJ, Carman JG (2002) Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol Mol Plant Pathol 50:59–69

    Article  CAS  Google Scholar 

  • Plesse B, Criqui M-C, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Schlaich T, Urbaniak BM, Malgras N, Ehler E, Birrer C, Meier L, Sautter C (2006) Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat. Plant Biotechnol J 3:63–75

    Article  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux J-P, Raskin I (1995) Salicylic acid in rice. Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  • Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu R (2002) Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Trans Res 11:31–41

    Article  CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (2004) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant non-specific lipid transfer proteins. Biochemistry 37:3623–3637

    Article  Google Scholar 

  • Tosi P, D’Ovidio R, Napier JA, Bekes F, Shewry PR (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor Appl Genet 108:468–476

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Srivastava V, Castilo AM, Fromm ME, Vasil IK (1993) Rapid production of transgenic wheat plants by microprojectile bombardment of cultured immature embryos. Bio/Technol 11:1553–1558

    Article  Google Scholar 

  • Verberne MC, Brouwer N, Delbianco F, Linthrost HJM, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45–50

    Article  PubMed  CAS  Google Scholar 

  • Witrzens B, Brettell RIS, Murray FR, McElroy D, Li Z, Dennis DS (1998) Comparison of the three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol 25:39–44

    Article  CAS  Google Scholar 

  • Xue Z-Y, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat B. Chattoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy-Barman, S., Sautter, C. & Chattoo, B.B. Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15, 435–446 (2006). https://doi.org/10.1007/s11248-006-0016-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-0016-1

Keywords

Navigation