Skip to main content
Log in

Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Snakins of the Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family are short sequenced peptides consisting of three different regions: a C-terminal GASA domain, an N-terminal signal sequence and a variable region. The GASA domain is comprised of 12 conserved cysteine residues responsible for the structural stability of the peptide. Snakins are playing a variety of roles in response to various biotic stresses such as bacterial, fungal, and nematodes infections and abiotic stress like water scarcity, saline condition, and reactive oxygen species. These properties make snakins very effective biotechnological tools for possible therapeutic and agricultural applications. This review was attempted to highlight and summarize the antifungal and antibacterial potential of snakins, also emphasizing their sequence characteristics, distributions, expression patterns and biological activities. In addition, further details of transgene expression in various plant species for enhanced fungal and bacterial resistance is also discussed, with special emphasis on their potential applications in crop protection and combating plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The relevant research articles were reviewed for this article.

Code availability

Not Applicable.

References

  1. Iqbal A, Khan RS, Shehryar K et al (2019) Antimicrobial peptides as effective tools for enhanced disease resistance in plants. Plant Cell Tiss Organ Cult 139:1–15. https://doi.org/10.1007/s11240-019-01668-6

    Article  CAS  Google Scholar 

  2. Khan RS, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Mii M (2019) Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9(5):192. https://doi.org/10.1007/s13205-019-1725-5

    Article  Google Scholar 

  3. Iqbal A, Khan RS, Shah DA, Hussain SA, Abdalla AN, Wadood A, Mii M (2023) Lipid transfer proteins: structure, classification and prospects of genetic engineering for improved disease resistance in plants. Plant Cell Tiss Organ Cult (PCTOC) 14:1–5. https://doi.org/10.1007/s11240-023-02445-2

    Article  CAS  Google Scholar 

  4. Li J, Hu S, Jian W, Xie C, Yang X (2021) Plant antimicrobial peptides: structures, functions, and applications. Bot Stu 62:5. https://doi.org/10.1186/s40529-021-00312-x

    Article  CAS  Google Scholar 

  5. Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961. https://doi.org/10.1104/pp.010685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mao Z, Zheng J, Wang Y, Chen G, Yang Y, Feng D, Xie B (2011) The new casn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica 39:151–164. https://doi.org/10.1007/s12600-011-0149-5

    Article  CAS  Google Scholar 

  7. Oliveira-Lima M, Benko-Iseppon AM, Neto JRCF, Rodriguez-Decuadro S, Kido EA, Crovella S, Pandolfi V (2017) Snakin: structure, roles and applications of a plant antimicrobial peptide. Curr Protein Pept Sci 18(4):368–374. https://doi.org/10.2174/1389203717666160619183140

    Article  CAS  PubMed  Google Scholar 

  8. Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23. https://doi.org/10.1094/MPMI.1999.12.1.16

    Article  CAS  PubMed  Google Scholar 

  9. Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012) Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. J Plant Physiol 158:252–263. https://doi.org/10.1104/pp.111.186544

    Article  CAS  Google Scholar 

  10. Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69:745–759. https://doi.org/10.1007/s11103-009-9452-7

    Article  CAS  PubMed  Google Scholar 

  11. Su T, Han M, Cao D, Xu M (2020) Molecular and biological properties of snakins: the foremost cysteine-rich plant host defense peptides. J Fungi 6(4):220. https://doi.org/10.3390/jof6040220

    Article  CAS  Google Scholar 

  12. Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere CE (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338. https://doi.org/10.1111/j.1364-3703.2008.00469.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balaji V, Smart CD (2012) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37. https://doi.org/10.1007/s11248-011-9506-x

    Article  CAS  PubMed  Google Scholar 

  14. Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS, Vanga BR, Pitman AR, Jones EE, Conner AJ, Jacobs JME (2013) GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. TAG Theor Appl Genet 127:677–689. https://doi.org/10.1007/s00122-013-2250-2

    Article  CAS  PubMed  Google Scholar 

  15. Faccio P, Vazquez-Rovere C, Hopp E, González G, Décima-Oneto C, Favret E, Paleo AD, Franzone P (2011) Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense snakin-1 gene. Czech J Genet 47(Special Issue):S135–S141. https://doi.org/10.17221/3268-CJGPB

    Article  CAS  Google Scholar 

  16. Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z (2013) Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genom 13:403–409. https://doi.org/10.1007/s10142-013-0332-5

    Article  CAS  Google Scholar 

  17. García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248. https://doi.org/10.1186/s12870-014-0248-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darqui FS, Radonic LM, Trotz PM, López N, Rovere CV, Hopp HE, Bilbao ML (2018) Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. J Biotechnol 283:62–69. https://doi.org/10.1016/j.jbiotec.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  19. Qiu B, Zhang Y, Wang Q, Wang Z, Chen H, Cui X, Liu D (2020) Panax notoginseng snakin gene increases resistance to Fusarium solani in transgenic tobacco. Ind Crops Prod 157:112902. https://doi.org/10.1016/j.indcrop.2020.112902

    Article  CAS  Google Scholar 

  20. Conti G, Gardella V, Vandecaveye MA, Gomez CA, Joris G, Hauteville C, Burdyn L, Almasia NI, Nahirñak V, Vazquez-Rovere C, Gochez AM (2020) Transgenic citrange troyer rootstocks overexpressing antimicrobial potato Snakin-1 show reduced citrus canker disease symptoms. J Biotechnol 324:99–102. https://doi.org/10.1016/j.jbiotec.2020.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Das K, Datta K, Sarkar SN et al (2021) Expression of antimicrobial peptide snakin-1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani. Plant Biotechnol Rep 15:39–54

    Article  CAS  Google Scholar 

  22. Jacobs JM, Meiyalaghan S, Mohan S, Latimer JM, Thompson ML, Monaghan KS, Jones EE, Conner AJ (2023) A potato intragene overexpressing GSL1 confers resistance to Pectobacterium atrosepticum. N Z J Crop Hortic Sci 51(2):212–230. https://doi.org/10.1080/01140671.2021.2021954

    Article  CAS  Google Scholar 

  23. Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171–180. https://doi.org/10.1266/ggs.81.171

    Article  CAS  PubMed  Google Scholar 

  24. Ando K, Grumet R (2010) Transcriptional profiling of rapidly growing cucumber fruit by 454-pyrosequencing analysis. J Am Soc Hortic Sci 135:291–302. https://doi.org/10.21273/JASHS.135.4.291

    Article  Google Scholar 

  25. Zimmermann R, Sakai H, Hochholdinger F (2010) The Gibberellic Acid Stimulated-Like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365. https://doi.org/10.1104/pp.109.149054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637–1647. https://doi.org/10.1093/jxb/ert021

    Article  CAS  PubMed  Google Scholar 

  27. Nahirñak V, Rivarola M, Gonzalez de Urreta M, Paniego N, Hopp HE, Almasia NI, Vazquez-Rovere C (2016) Genome-wide analysis of the Snakin/GASA gene family in Solanum Tuberosum cv. Kennebec. Am J Potato Res 93:172–188. https://doi.org/10.1007/s12230-016-9494-8

    Article  CAS  Google Scholar 

  28. Fang Y, Mei H, Zhou B, Xiao X, Yang M, Huang Y, Long X, Hu S, Tang C (2016) De novo transcriptome analysis reveals distinct defense mechanisms by young and mature leaves of Hevea brasiliensis (para rubber tree). Sci Rep 6:1–10. https://doi.org/10.1038/srep33151

    Article  CAS  Google Scholar 

  29. Rodríguez S, Mariana D, Vega B, Dans PD, Pandolfi V, Benko-Iseppon AM, Cecchetto G (2018) Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae). Amino Acids 50:1245–1259. https://doi.org/10.1007/s00726-018-2598-3

    Article  CAS  Google Scholar 

  30. Ahmad MZ, Sana A, Jamil A, Nasir JA, Ahmed S, Hameed MU (2019) A genome-wide approach to the comprehensive analysis of GASA gene family in Glycine max. Plant Mol Biol 100:607–620. https://doi.org/10.1007/s11103-019-00883-1

    Article  CAS  PubMed  Google Scholar 

  31. Balaji V, Sessa G, Smart CD (2011) Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis. Phytopathology 101:349–357. https://doi.org/10.1094/PHYTO-05-10-0132

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M, Wang Z, Jian S (2022) Genome-wide identification and functional analysis of the GASA gene family responding to multiple stressors in Canavalia rosea. Genes 13(11):1988. https://doi.org/10.3390/genes13111988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang S, Wang X (2017) One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant Signal Behav 12:e1226453. https://doi.org/10.3390/genes13111988

    Article  CAS  PubMed  Google Scholar 

  34. Nahirñak V, Rivarola M, Almasia NI, Barrios Baron MP, Hopp HE, Vile D, Paniego N, Vazquez Rovere C (2019) Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS ONE 14:e0214165. https://doi.org/10.1371/journal.pone.0214165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meiyalaghan S, Thomson SJ, Fiers MW, Barrell PJ, Latimer JM, Mohan S, Jones EE, Conner AJ, Jacobs JM (2014) Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genomics 15:2. https://doi.org/10.1186/1471-2164-15-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silverstein KT, Moskal W, Wu HC, Underwood B, Graham M, Town CD, VandenBosch K (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  CAS  PubMed  Google Scholar 

  37. Herbel V, Schäfer H, Wink M (2015) Recombinant production of Snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules 20(8):14889–14901. https://doi.org/10.1111/j.1365-313X.2007.03136.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, Baker EN, Harris PW, Brimble MA (2016) Protein structures very important paper radiation damage and racemic protein crystallography reveal the unique structure of the GASA/Snakin protein superfamily. Angew Chem 128:8062–8065. https://doi.org/10.1002/anie.201602719

    Article  CAS  Google Scholar 

  39. Nolde SB, Vassilevski A, Rogozhin E, Barinov N, Balashova T, Samsonova OV, Baranov YV, Feofanov AV, Egorov T, Arseniev AS, Grishin EV (2011) Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 286:25145–25153. https://doi.org/10.1074/jbc.M110.200378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oparin PB, Mineev KS, Dunaevsky YE, Arseniev AS, Belozersky M, Grishin EV, Egorov T, Vassilevski A (2012) Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 446:69–77. https://doi.org/10.1042/BJ20120548

    Article  CAS  PubMed  Google Scholar 

  41. Porto WF, Franco OL (2013) Theoretical structural insights into the Snakin/GASA family. Peptides 44:163–167. https://doi.org/10.1016/j.peptides.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  42. Herbel V, Wink M (2016) Mode of action and membrane specificity of the antimicrobial peptide snakin-2. Peer J 4:e1987. https://doi.org/10.7717/peerj.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rubinovich L, Ruthstein S, Weiss D (2014) The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Mol Plant 7(1):244–247. https://doi.org/10.1093/mp/sst141

    Article  CAS  PubMed  Google Scholar 

  44. Almasia NI, Nahirñak V, Hopp HE, Vazquez-Rovere CE (2020) Potato Snakin-1: an antimicrobial player of the trade-of between host defense and development. Plant Cell Rep 11:1–11. https://doi.org/10.1007/s00299-020-02557-5

    Article  CAS  Google Scholar 

  45. Shwaiki LN, Arendt EK, Lynch KM (2020) Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers—action against food spoilage yeast. Food Control 118:107362. https://doi.org/10.1016/j.foodcont.2020.107362

    Article  CAS  Google Scholar 

  46. Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63(1):12–17. https://doi.org/10.1016/j.pep.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  47. Kovalskaya N, Zhao Y, Hammond RW (2011) Antibacterial and antifungal activity of a Snakin-defensin hybrid protein expressed in tobacco and potato plants. Open J Plant Sci 5:29–42

    Article  CAS  Google Scholar 

  48. Zare-Zardini H, Tolueinia B, Hashemi A, Ebrahimi L, Fesahat F (2013) Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am J Alzheimers Dis Other Demen 28:702–709. https://doi.org/10.1177/1533317513500839

    Article  PubMed  Google Scholar 

  49. Daneshmand F, Zare-Zardini H, Ebrahimi L (2013) Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Nat Prod Res 27(24):2292–2296. https://doi.org/10.1080/14786419.2013.827192

    Article  CAS  PubMed  Google Scholar 

  50. Kuddus MR, Rumi F, Tsutsumi M, Takahashi R, Yamano M, Kamiya M, Kikukawa T, Demura M, Aizawa T (2016) Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr Purif 122:15–22. https://doi.org/10.1016/j.pep.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  51. Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic Potatoesexpressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  52. Khan RS, Sjahril R, Nakamura MM (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20. https://doi.org/10.1007/s11816-008-0043-x

    Article  Google Scholar 

  53. Khan RS, Kameya N, Nakamura I, Masahiro M (2012) Transgenic Petunia hybrida expressing a synthetic fungal chitinase gene confers disease tolerance to Botrytis cinerea. Plant Biotechnol 29(3):285–291. https://doi.org/10.5511/plantbiotechnology.12.0412a

    Article  CAS  Google Scholar 

  54. Khan RS, Darwish NA, Khattak B, Ntui V, Kong K, Shimomae K et al (2014) Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding Chitinase and Wasabi Defensin genes. Molecular Biotechnol 56:814–823. https://doi.org/10.1007/s12033-014-9760-2

    Article  CAS  Google Scholar 

  55. Deng M, Peng J, Zhang J, Ran S, Cai C, Yu L, Ni S, Huang X, Li L, Wang X (2021) The cysteine-rich peptide snakin-2 negatively regulates tubers sprouting through modulating lignin biosynthesis and H2O2 accumulation in potato. Int J Mol Sci 22(5):2287. https://doi.org/10.3390/ijms22052287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li L, Lyu C, Chen J, Lu Y, Yang S, Ni S, Zheng S, Yu L, Wang X, Wang Q, Lu L (2022) Snakin-2 interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase 1 to inhibit sprout growth in potato tubers. Hort Res 5:9. https://doi.org/10.1093/hr/uhab060

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Ethics declarations

Conflict of interest

All the authors of this article have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not Applicable.

Consent for publication

All the authors have their own contribution in writing of this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Khan, R.S. Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants. Mol Biol Rep 50, 8683–8690 (2023). https://doi.org/10.1007/s11033-023-08734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08734-5

Keywords

Navigation