Skip to main content
Log in

Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus)

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In screening for potent antimicrobial proteins (AMPs) from plant seeds, we had purified a heat-stable AMP, LJAMP2, from the seeds of a medicine herb, motherwort (Leonurus japonicus Houtt). In an in vitro assay, the protein can inhibit the growth of both fungi and bacteria. Then a cDNA encoding LJAMP2 was cloned by the rapid amplification of cDNA ends based on the N-terminal amino acid sequence determined. The deduced amino acid sequences of this cDNA show similarity to plant non-specific lipid transfer proteins. Northern blotting assay revealed that this nsLTP-like gene, designated LJAMP2, was expressed in seeds. Overexpression of LJAMP2 in tobacco enhanced resistance to the fungal pathogen Alternaria alternata and the bacterial pathogen Ralstonia solanacearum, significantly, while no visible alteration in plant growth and development. Our data confirm the antifungal and antibacterial function of LJAMP2 from motherwort seeds and suggest the potential of LJAMP2 in improving disease resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bi YM, Cammue BPA, Goodwin PH, KrishnaRaj S, Saxena PK (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Blein J-P, Coutos-Thévenotb P, Marionc D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7:293–296

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Broekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28:1144–1153

    Article  CAS  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  PubMed  CAS  Google Scholar 

  • Cheng CS, Samuel D, Liu YJ, Shyu JC, Lai SM, Lin KF, Lyu PC (2004) Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry 43:13628–13636

    Article  PubMed  CAS  Google Scholar 

  • Da Silva P, Landon C, Industri B, Marais A, Marion D, Ponchet M, Vovelle F (2005) Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins: Struct, Funct, Genet 59:356–367

    Article  CAS  Google Scholar 

  • Frisch DA, Harris-Haller LW, Yokubaitis NT, Thomas TL, Hardin SH, Hall TC (1995) Complete sequence of the binary vector Bin 19. Plant Mol Biol 27:405–409

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Fencil KJ, Xu X, Schwedler DA, Gilbert JR, Herman RA (2006) Purification and characterization of a chimeric Cry1F δ-endotoxin expressed in transgenic cotton plants. J Agric Food Chem 54:829–835

    Article  PubMed  CAS  Google Scholar 

  • Gausing K (1994) Lipid transfer protein genes specifically expressed in barley leaves and coleoptiles. Planta 192:574–580

    Article  PubMed  CAS  Google Scholar 

  • Gomes E, Sagot E, Gaillard C, Laquitaine L, Poinssot B, Sanejouand YH, Delrot S, Coutos-Thevenot P (2003) Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Mol Plant-Microbe Interact 16:456–464

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361–373

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26:915–928

    Article  PubMed  CAS  Google Scholar 

  • Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel K-H, Vilcinskas A (2006) Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol Chem 387:549–557

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Yoon IS, Suh SC, Kim HI (2002) Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Rep 20:857–863

    Article  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395

    Article  PubMed  CAS  Google Scholar 

  • Lin KF, Liu YN, Hsu STD, Samuel D, Cheng CS, Bonvin AMJJ, Lyu PC (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44:5703–5712

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16–20

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Garcia-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Segura A, Garcia-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316:119–122

    Article  PubMed  CAS  Google Scholar 

  • Oard S, Enright F (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Shin R, Park JM, Lee GJ, Youl JS, Paek KH (2002) Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol Biol 48:243–254

    Article  PubMed  CAS  Google Scholar 

  • Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171

    Article  CAS  Google Scholar 

  • Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS (2004) Expression of harpin(Xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048–1055

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Samuel D, Liu YJ, Cheng CS, Lyu PC (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277:35267–35273

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Leuven FV, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Xie W, Chi F, Hu W, Mao G, Sun D, Li C, Sun Y (2007) BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Rep 27:159–169

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Luo M, Fang W, Luo K, Hou L, Li D, Pei Y (2002) PCR walking in cotton genome using YADE method. Acta Genet Sin 29:62–66

    PubMed  CAS  Google Scholar 

  • Yang X, Li J, Li X, She R, Pei Y (2006) Isolation and characterization of a novel thermostable non-specific lipid transfer proteinlike antimicrobial protein from motherwort (Leonurus japonicus Houtt) seeds. Peptides 27:3122–3128

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Xiao Y, Wang X, Pei Y (2007) Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 73:939–946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 30370916 to X. Yang, and grant no. 30671327 to X. Li).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingyong Yang or Yan Pei.

Additional information

Communicated by Y. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Wang, X., Li, X. et al. Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). Plant Cell Rep 27, 759–766 (2008). https://doi.org/10.1007/s00299-008-0506-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0506-0

Keywords

Navigation