Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 123, Issue 3, pp 633–644 | Cite as

Recovery and characterization of homozygous lines from two sweet orange cultivars via anther culture

  • Shu-Ming Wang
  • Hong Lan
  • Hong-Bo Cao
  • Qiang Xu
  • Chun-Li Chen
  • Xiu-Xin Deng
  • Wen-Wu GuoEmail author
Original Article

Abstract

Homozygous genotypes are valuable for breeding and genomic studies in higher plants. The production of haploids and DHs through gametic embryogenesis allows a single-step development of complete homozygous lines from heterozygous parents, requiring much less time than the conventional selfing method. Here, we report the regeneration of haploid and double haploid lines of citrus species through anther culture. The anthers of seven citrus cultivars at the uninucleate stage were cultured and induced using four previously reported mediums. Ten haploid lines (2n = x = 9), six DH lines (2n = 2x = 18), two tetraploid lines (2n = 4x = 36) of ‘Early Gold’ sweet orange, and one haploid line of ‘Rohde Red’ Valencia sweet orange were obtained, as identified by ploidy, karyotype and simple sequence repeats (SSRs) analysis. All of them were confirmed to be fully homozygous by SSR analysis using 31 primer pairs that are distributed evenly on each of the chromosomes. Among them, plants regenerated from two DH lines of ‘Early Gold’ sweet orange grew vigorously in the greenhouse. To our knowledge, this is the first report on sweet orange anther culture with successful DH plant regeneration. The haploid, DH and tetraploid lines reported here hold great potential for future citrus genome resequencing in genetic studies and seedless breeding via somatic fusion.

Keywords

Citrus Anther culture Haploid Doubled haploid Karyotype analysis Molecular characterization 

Abbreviations

DH

Doubled haploid

MT

Murashige and Tucker (1969) medium

N6

Germanà (2005) medium

6-BA

6-benzyaminopurine

NAA

Naphthalene acetic acid

IAA

Indoi-3-acetic acid

KT

Kinetin

2,4-D

2, 4-dichlorophenoxyacetic acid

GA

Gibberellic acid

TDZ

Thidiazuron

DAPI

4′,6-diamidino-2-phenylindole

Notes

Acknowledgments

This research was financially supported by the Ministry of Science and Technology of China (No. 2011CB100606), the National NSF of China (Nos. 31125024, 31221062), and the Ministry of Education of China (IRT13065). The authors thank Han-Chang Zhu in Foreign Language College (HZAU) for his efforts to polish the language.

Authors contribution

SMW conducted most experiments, data analysis and wrote the manuscript. HL, HBC and CLC participated in chromosomal cytogenetic analysis. QX and XXD mined and provided some SSR markers. WWG conceived, supervised the research and revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2015_866_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Aleza P, Juarez J, Hernandez M, Pina JA, Ollitrault P, Navarro L (2009) Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol 9:110PubMedCentralCrossRefPubMedGoogle Scholar
  2. Argout X, Salse J, Aury J, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Zi Shi, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma ZR, Zhang YF, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Francis Q, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–108CrossRefPubMedGoogle Scholar
  3. Benelli C, Germanà MA, Ganino T, Beghe D, Fabbri A (2010) Morphological and anatomical observations of abnormal somatic embryos from anther cultures of Citrus reticulata. Biol Plant 54:224–230CrossRefGoogle Scholar
  4. Cao HB, Biswas MK, Lu Y, Amar MH, Tong Z, Xu Q, Xu J, Guo WW, Deng XX (2011) Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell Tiss Org Cult 104:415–423CrossRefGoogle Scholar
  5. Cardoso JC, Martinelli AP, Germanà MA, Latado RR (2014) In vitro anther culture of sweet orange (Citrus sinensis L. Osbeck) genotypes and of a C. clementina × C. sinensis ‘Hamlin’ hybrid. Plant Cell Tiss Org Cult 117:455–464CrossRefGoogle Scholar
  6. Chen ZG (1985) A study on induction of plants from Citrus pollen. Fruit Var J 39:44–50Google Scholar
  7. Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An effecient protocol for genomic DNA extraction. Plant Mol Biol Rep 21:177a–177gCrossRefGoogle Scholar
  8. Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tiss Org Cult 87:145–153CrossRefGoogle Scholar
  9. Cornelio MTMN, Figueiroa ARS, Santos KGB, Carvalho R, Filho WSS, Guerra M (2003) Chromosomal relationships among cultivars of Citrus reticulata Blanco, its hybrids and related species. Plant Syst Evol 240:149–161CrossRefGoogle Scholar
  10. Deng XX, Deng ZA, Xiao SY, Zhang WC (1992) Pollen derived plantlets from anther culture of chang papeda hybrid No. 14 and trifoliate orange. In: Proceedings of the 7th international citrus congress, acireale, Italy, March 1992. International society of citriculture, pp 190–192Google Scholar
  11. Drira N, Benbadis A (1975) Analysis, by in vitro anther culture, of the androgenetic potential of two Citrus species (Citrus medica L. and Citrus limon L. Burm). C R Acad Sci 281:1321–1324Google Scholar
  12. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424CrossRefPubMedGoogle Scholar
  13. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375CrossRefPubMedGoogle Scholar
  14. Froelicher Y, Bassene JB, Jedidi-Neji E, Dambier D, Morillon R, Bernardini G, Costantino G, Ollitrault P (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944CrossRefPubMedGoogle Scholar
  15. Germanà MA (2005) Protocol of somatic embryogenesis from Citrus spp. anther culture. In: Jain SM, Gupta PK (eds) Protocol of somatic embryogenesis-woody plants. Kluwer, Dordrecht, pp 191–207CrossRefGoogle Scholar
  16. Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146CrossRefGoogle Scholar
  17. Germanà MA (2011a) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300CrossRefGoogle Scholar
  18. Germanà MA (2011b) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857CrossRefPubMedGoogle Scholar
  19. Germanà MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66CrossRefGoogle Scholar
  20. Germanà MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22:181–187CrossRefPubMedGoogle Scholar
  21. Germanà MA, Crescimanno FG, de Pasquale F, Wang YY (1991) Androgenesis in 5 cultivars of Citrus limon L. Burm. Acta Hortic 300:315–324Google Scholar
  22. Germanà MA, Wang YY, Barbagallo MG, Iannolino G, Crescimanno FG (1994) Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort. ex Tan. and Citrus reticulata Blanco. J Hort Sci 69:473–480Google Scholar
  23. Germanà MA, Chiancone B, Iocona C, Moleu R (2005a) The effect of light quality on anther culture of Citrus clementina Hort. ex Tan. Acta Physiol Plant 27:717–721CrossRefGoogle Scholar
  24. Germanà MA, Chiancone B, Lain O, Testolin R (2005b) Anther culture in Citrus clementina: a way to regenerate tri-haploids. Aust J Agric Res 56:839–845CrossRefGoogle Scholar
  25. Germanà MA, Aleza P, Carrera E, Chen CX, Chiancone B, Costantino G, Dambier D, Deng XX, Federici CT, Froelicher Y, Guo WW, Ibáñez V, Juárez J, Kwok K, Luro F, Machado MA, Navarro L, Ollitrault P, Ríos G, Roose ML, Talon M, Xu Q, Gmitter FG Jr (2013) Cytological and molecular characterization of three gametoclones of Citrus clementina. BMC Plant Biol 13:129PubMedCentralCrossRefPubMedGoogle Scholar
  26. Gmitter FG Jr, Chen C, Machado MA, de Souza AA, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus Genomics. Tree Genet Genomes 8:611–626CrossRefGoogle Scholar
  27. Guerra M (1993) Cytogenetics of rutaceae. V. High chromosomal variability in Citrus species revealed by CMA/DAPI staining. Heredity 71:234–241CrossRefGoogle Scholar
  28. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  29. Guo WW, Wu RC, Cheng YJ, Deng XX (2007) Production and molecular characterization of citrus intergeneric somatic hybrids between red tangerine and citrange. Plant Breed 126:72–76CrossRefGoogle Scholar
  30. Hidaka T (1984a) Effects of sucrose concentration, pH of media, and culture temperature on anther culture of citrus. Jpn J Breed 34:416–422CrossRefGoogle Scholar
  31. Hidaka T (1984b) Induction of plantlets from anthers of ‘Trovita’ orange (Citrus sinensis Osbeck). J Jpn Soc Hortic Sci 53:1–5CrossRefGoogle Scholar
  32. Hidaka T, Yamada Y, Shichijo T (1979) In vitro differentiation of haploid plants by anther culture in Poncirus trifoliata (L.) Raf. Jpn J Breed 29:248–254CrossRefGoogle Scholar
  33. Hofer M, Gomez A, Aguiriano E, Manzanera JA, Bueno MA (2002) Analysis of simple sequence repeat markers in homozygous lines of apple. Plant Breed 121:159–162CrossRefGoogle Scholar
  34. Kadota M, Han D-S, Niimi Y (2002) Plant regeneration from anther-derived embryos of apple and pear. Hortic Sci 37:962–965Google Scholar
  35. Kobayashi S, Ohgawara T, Saito W, Nakamura Y, Omura M (1997) Production of triploid somatic hybrids in citrus. J Jpn Soc Hortic Sci 66:453–458CrossRefGoogle Scholar
  36. Li Y, Li H, Chen Z, Ji LX, Ye MX, Wang J, Wang LN, An XM (2013) Haploid plants from anther cultures of poplar (Populus × beijingensis). Plant Cell Tiss Org Cult 114:39–48CrossRefGoogle Scholar
  37. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L (1996) Compatative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet 93:1211–1217CrossRefPubMedGoogle Scholar
  38. Miranda M, Ikeda F, Endo T, Moriguchi T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncitrus and Fortunella chromosomes. Chromosome Res 5:86–92CrossRefPubMedGoogle Scholar
  39. Moraes APd, Filho WdSS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121CrossRefPubMedGoogle Scholar
  40. Murashige T, Tucker DPH (1969) Growth factor requirements of Citrus tissue culture. In: Proceedings of 1st international citrus symposium vol 3, pp 1155–1161Google Scholar
  41. Nelson MN, Mason AS, Castello MC, Thomson L, Yan G, Cowling WA (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theo Appl Genet 119:497–505CrossRefGoogle Scholar
  42. Ollitrault P, Vanel F, Froelicher Y, Dambier D (2000) Creation of triploid citrus hybrids by electrofusion of haploid and diploid protoplasts. Acta Hortic 535:191–198CrossRefGoogle Scholar
  43. Peixe A, Campos MD, Cavaleiro C, Barroso J, Pais MS (2000) Gamma-irradiated pollen induces the formation of 2n endosperm and abnormal embryo development in European plum (Prunus domestica L., cv. “Rainha Cláudia Verde”). Sci Hortic 86:267–278CrossRefGoogle Scholar
  44. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618CrossRefPubMedGoogle Scholar
  45. Ruiz C, Breto MP, Asins MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94CrossRefGoogle Scholar
  46. Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491CrossRefPubMedGoogle Scholar
  47. The International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefGoogle Scholar
  48. Toolapong P, Komatsu H, Iwamasa M (1996) Triploids and haploid progenies derived from small seeds of‘Banpeiyu’ pummelo, crossed with‘Ruby Red’grapefruit. J Jpn Soc Hortic Sci 65:255–260CrossRefGoogle Scholar
  49. Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44:467–470CrossRefPubMedGoogle Scholar
  50. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Muñoz-Sanz JV, Ibanez V, Herrero-Ortega A, Aleza P, Pérez-Pérez J, Ramón D, Brunel D, Luro F, Chen C, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astúa J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter FG Jr, Rokhsar D (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662PubMedCentralCrossRefPubMedGoogle Scholar
  51. Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G (2014a) Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant Physiol 164:1309–1325PubMedCentralCrossRefPubMedGoogle Scholar
  52. Xiao SX, Biswas MK, Li MY, Deng XX, Xu Q, Guo WW (2014b) Production and molecular characterization of diploid and tetraploid somatic cybrid plants between male sterile Satsuma mandarin and seedy sweet orange cultivars. Plant Cell Tiss Org Cult 116:81–88CrossRefGoogle Scholar
  53. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66CrossRefPubMedGoogle Scholar
  54. Yahata M, Yasuda K, Nagasawa K, Harusaki S, Komatsu H, Kunitake H (2010) Production of haploid plant of ‘Banpeiyu’ pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen. J Jpn Soc Hortic Sci 79:239–245CrossRefGoogle Scholar
  55. Yahata M, Nukaya T, Sudo M, Ohta T, Yasuda K, Inagaki H, Mukai H, Harada H, Takagi T, Komatsu H, Kunitake H (2015) Morphological characteristics of a doubled haploid line from ‘Banpeiyu’pummelo [Citrus maxima (Burm.) Merr.] and its reproductive function. Hortic J 84:30–36CrossRefGoogle Scholar
  56. Yamamoto M, Tominaga S (2004) CMA banding pattern of chromosome is useful for the identification of chromosome doubling in haploid citrus. Breed Sci 54:351–354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shu-Ming Wang
    • 1
  • Hong Lan
    • 1
  • Hong-Bo Cao
    • 1
  • Qiang Xu
    • 1
  • Chun-Li Chen
    • 1
  • Xiu-Xin Deng
    • 1
  • Wen-Wu Guo
    • 1
    Email author
  1. 1.Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina

Personalised recommendations